Characterization of aerosol trace elements over the polar regions

Atmospheric deposition of dust is an important pathway supplying nutrient trace elements to the surface water of remote oceans. Recent warming in the sensitive polar regions might potentially enhance the regional dust emission. Bulk and size-segregated aerosol samples were collected in the western A...

Full description

Bibliographic Details
Other Authors: Fan, Songyun (author), Gao, Yuan (chair), Elzinga, Evert (member), Khalizov, Alexei (member), Sherrell, Robert (member), Rutgers University, Graduate School - Newark
Format: Thesis
Language:English
Published: 2022
Subjects:
Online Access:http://dissertations.umi.com/gsn.newark.rutgers:10177
id ftrutgersuniv:oai:example.org:rutgers-lib:67442
record_format openpolar
spelling ftrutgersuniv:oai:example.org:rutgers-lib:67442 2023-05-15T13:48:16+02:00 Characterization of aerosol trace elements over the polar regions Fan, Songyun (author) Gao, Yuan (chair) Elzinga, Evert (member) Khalizov, Alexei (member) Sherrell, Robert (member) Rutgers University Graduate School - Newark 2022 153 pages : illustrations application/pdf http://dissertations.umi.com/gsn.newark.rutgers:10177 English eng Rutgers University Electronic Theses and Dissertations ETD Graduate School - Newark Electronic Theses and Dissertations rucore10002600001 http://dissertations.umi.com/gsn.newark.rutgers:10177 The author owns the copyright to this work. Environmental science Atmospheric sciences Atmospheric chemistry Aerosols Antarctic peninsula Arctic Ocean Fe oxidation states Fe XANES Trace elements Text theses 2022 ftrutgersuniv 2022-08-08T17:32:31Z Atmospheric deposition of dust is an important pathway supplying nutrient trace elements to the surface water of remote oceans. Recent warming in the sensitive polar regions might potentially enhance the regional dust emission. Bulk and size-segregated aerosol samples were collected in the western Antarctic Peninsula and the Arctic Ocean to characterize atmospheric trace elements and to evaluate the importance of aeolian dust input to the high latitude marine ecosystems. The objectives of this study are to (1) characterize atmospheric trace elements in aerosols and identify their major sources, (2) quantify the atmospheric dust deposition, and (3) assess the aerosol iron bioavailability through characterizing the aerosol Fe mineralogy and oxidation states. Sampling of both size-segregated and bulk aerosol particles was carried out at Palmer Station in the western Antarctic Peninsula and during a cruise in the Arctic Ocean. Results from the western Antarctic Peninsula showed that trace elements in aerosols over this region are primarily derived from (1) regional crustal emissions, (2) long-range transport, and (3) sea salt aerosols. Elements derived from crustal sources (Al, P, Ti, V, Mn, Ce) with crustal enrichment factors (EFcrust) <10 were dominated by the coarse-mode particles (>1.8 µm) and peaked around 4.4 µm in diameter. Other elements including Ca, Ni, Cu, Zn, and Pb showed EFcrust > 10. The particle size distribution of aerosol Pb was dominated by fine particles and peaked at 0.14–0.25 µm, suggesting an anthropogenic contribution through long-range transport. The estimated dry deposition fluxes of mineral dust during the 2016-2017 austral summer in the Antarctic Peninsula ranged from 0.65 to 28 mg m−2 yr−1 with a mean of 5.5±5.0 mg m−2 yr−1, which were lower than most fluxes reported previously in coastal Antarctica. The Fe minerals in the dust particles over the Antarctic Peninsula were predominantly hematite and biotite with a minor fraction of pyrite and ilmenite. The aerosol Fe oxidation ... Thesis Antarc* Antarctic Antarctic Peninsula Antarctica Arctic Arctic Ocean RUcore - Rutgers University Community Repository Antarctic Antarctic Peninsula Arctic Arctic Ocean Austral Palmer Station ENVELOPE(-64.050,-64.050,-64.770,-64.770) Palmer-Station ENVELOPE(-64.050,-64.050,-64.770,-64.770) The Antarctic
institution Open Polar
collection RUcore - Rutgers University Community Repository
op_collection_id ftrutgersuniv
language English
topic Environmental science
Atmospheric sciences
Atmospheric chemistry
Aerosols
Antarctic peninsula
Arctic Ocean
Fe oxidation states
Fe XANES
Trace elements
spellingShingle Environmental science
Atmospheric sciences
Atmospheric chemistry
Aerosols
Antarctic peninsula
Arctic Ocean
Fe oxidation states
Fe XANES
Trace elements
Characterization of aerosol trace elements over the polar regions
topic_facet Environmental science
Atmospheric sciences
Atmospheric chemistry
Aerosols
Antarctic peninsula
Arctic Ocean
Fe oxidation states
Fe XANES
Trace elements
description Atmospheric deposition of dust is an important pathway supplying nutrient trace elements to the surface water of remote oceans. Recent warming in the sensitive polar regions might potentially enhance the regional dust emission. Bulk and size-segregated aerosol samples were collected in the western Antarctic Peninsula and the Arctic Ocean to characterize atmospheric trace elements and to evaluate the importance of aeolian dust input to the high latitude marine ecosystems. The objectives of this study are to (1) characterize atmospheric trace elements in aerosols and identify their major sources, (2) quantify the atmospheric dust deposition, and (3) assess the aerosol iron bioavailability through characterizing the aerosol Fe mineralogy and oxidation states. Sampling of both size-segregated and bulk aerosol particles was carried out at Palmer Station in the western Antarctic Peninsula and during a cruise in the Arctic Ocean. Results from the western Antarctic Peninsula showed that trace elements in aerosols over this region are primarily derived from (1) regional crustal emissions, (2) long-range transport, and (3) sea salt aerosols. Elements derived from crustal sources (Al, P, Ti, V, Mn, Ce) with crustal enrichment factors (EFcrust) <10 were dominated by the coarse-mode particles (>1.8 µm) and peaked around 4.4 µm in diameter. Other elements including Ca, Ni, Cu, Zn, and Pb showed EFcrust > 10. The particle size distribution of aerosol Pb was dominated by fine particles and peaked at 0.14–0.25 µm, suggesting an anthropogenic contribution through long-range transport. The estimated dry deposition fluxes of mineral dust during the 2016-2017 austral summer in the Antarctic Peninsula ranged from 0.65 to 28 mg m−2 yr−1 with a mean of 5.5±5.0 mg m−2 yr−1, which were lower than most fluxes reported previously in coastal Antarctica. The Fe minerals in the dust particles over the Antarctic Peninsula were predominantly hematite and biotite with a minor fraction of pyrite and ilmenite. The aerosol Fe oxidation ...
author2 Fan, Songyun (author)
Gao, Yuan (chair)
Elzinga, Evert (member)
Khalizov, Alexei (member)
Sherrell, Robert (member)
Rutgers University
Graduate School - Newark
format Thesis
title Characterization of aerosol trace elements over the polar regions
title_short Characterization of aerosol trace elements over the polar regions
title_full Characterization of aerosol trace elements over the polar regions
title_fullStr Characterization of aerosol trace elements over the polar regions
title_full_unstemmed Characterization of aerosol trace elements over the polar regions
title_sort characterization of aerosol trace elements over the polar regions
publishDate 2022
url http://dissertations.umi.com/gsn.newark.rutgers:10177
long_lat ENVELOPE(-64.050,-64.050,-64.770,-64.770)
ENVELOPE(-64.050,-64.050,-64.770,-64.770)
geographic Antarctic
Antarctic Peninsula
Arctic
Arctic Ocean
Austral
Palmer Station
Palmer-Station
The Antarctic
geographic_facet Antarctic
Antarctic Peninsula
Arctic
Arctic Ocean
Austral
Palmer Station
Palmer-Station
The Antarctic
genre Antarc*
Antarctic
Antarctic Peninsula
Antarctica
Arctic
Arctic Ocean
genre_facet Antarc*
Antarctic
Antarctic Peninsula
Antarctica
Arctic
Arctic Ocean
op_relation Rutgers University Electronic Theses and Dissertations
ETD
Graduate School - Newark Electronic Theses and Dissertations
rucore10002600001
http://dissertations.umi.com/gsn.newark.rutgers:10177
op_rights The author owns the copyright to this work.
_version_ 1766249053741383680