Natural Communities of Carotenogenic Chlorophyte Haematococcus lacustris and Bacteria from the White Sea Coastal Rock Ponds

Haematococcus lacustris is a biotechnologically important green unicellular alga producing widely used keta-karotenoid astaxanthin. In natural habitats, it exists in the form of algal-bacterial community, and under laboratory conditions, it is also accompanied by bacteria. The issue of the bacterial...

Full description

Bibliographic Details
Published in:Microbial Ecology
Main Authors: Kublanovskaya A., Solovchenko A., Fedorenko T., Chekanov K., Lobakova E.
Format: Article in Journal/Newspaper
Language:English
Published: Springer New York LLC
Subjects:
Online Access:https://repository.rudn.ru/records/article/record/55397/
Description
Summary:Haematococcus lacustris is a biotechnologically important green unicellular alga producing widely used keta-karotenoid astaxanthin. In natural habitats, it exists in the form of algal-bacterial community, and under laboratory conditions, it is also accompanied by bacteria. The issue of the bacterial composition of industrial algal cultures is widely recognized as important. However, there is a dearth of information about bacterial composition of H. lacustris communities. In current work, we analyze the composition of natural H. lacustris communities from the White Sea coastal temporal rock ponds. For the first time, a 16S rRNA gene-based metagenome of natural H. lacustris bacterial communities has been generated. Main results of its analysis are as follow. Bacterial families Comamonadaceae, Cytophagaceae, Xanthomonadaceae, Acetobacteraceae, Rhodobacteraceae, and Rhodocyclaceae were observed in all studied H. lacustris natural communities. They also contained genera Hydrogenophaga and Cytophaga. Bacteria from the Hydrogenophaga genus were present in H. lacustris cultures after their isolation under the conditions of laboratory cultivation. Similar to other planktonic microalgae, H. lacustris forms a phycosphere around the cells. In this zone, bacteria attached to the algal surface. The contact between H. lacustris and bacteria is maintained even after sample drying. The study provides information about possible members of H. lacustris core microbiome, which can be presented in the industrial and laboratory cultures of the microalga. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.