Supplementary Material The supplementary information contains four figures S1-S4. These figures depict the abundance, richness, and phylum level taxa between the seamounts analysed in this manuscript. In addition, we have a supplementary figure graphically showing the error output from the Multivariate Regression Trees run on the microbial and environmental data. from Microbe biogeography tracks water-masses in a dynamic oceanic frontal system

Dispersal limitation, not just environmental selection, plays an important role in microbial biogeography. The distance–decay relationship is thought to be weak in habitats where dispersal is high, such as in the pelagic environment, where ocean currents facilitate microbial dispersal. Most studies...

Full description

Bibliographic Details
Main Authors: Anni Djurhuus, Philipp H. Boersch-Supan, Svein-Ole Mikalsen, Alex D. Rogers
Format: Other Non-Article Part of Journal/Newspaper
Language:unknown
Published: 2017
Subjects:
Online Access:https://doi.org/10.6084/m9.figshare.4702252.v1
https://figshare.com/articles/journal_contribution/Supplementary_Material_The_supplementary_information_contains_four_figures_S1-S4_These_figures_depict_the_abundance_richness_and_phylum_level_taxa_between_the_seamounts_analysed_in_this_manuscript_In_addition_we_have_a_supplementary_figure_graphically_sho/4702252
id ftroysocietyfig:oai:figshare.com:article/4702252
record_format openpolar
spelling ftroysocietyfig:oai:figshare.com:article/4702252 2023-05-15T13:57:16+02:00 Supplementary Material The supplementary information contains four figures S1-S4. These figures depict the abundance, richness, and phylum level taxa between the seamounts analysed in this manuscript. In addition, we have a supplementary figure graphically showing the error output from the Multivariate Regression Trees run on the microbial and environmental data. from Microbe biogeography tracks water-masses in a dynamic oceanic frontal system Anni Djurhuus Philipp H. Boersch-Supan Svein-Ole Mikalsen Alex D. Rogers 2017-02-28T09:19:26Z https://doi.org/10.6084/m9.figshare.4702252.v1 https://figshare.com/articles/journal_contribution/Supplementary_Material_The_supplementary_information_contains_four_figures_S1-S4_These_figures_depict_the_abundance_richness_and_phylum_level_taxa_between_the_seamounts_analysed_in_this_manuscript_In_addition_we_have_a_supplementary_figure_graphically_sho/4702252 unknown doi:10.6084/m9.figshare.4702252.v1 https://figshare.com/articles/journal_contribution/Supplementary_Material_The_supplementary_information_contains_four_figures_S1-S4_These_figures_depict_the_abundance_richness_and_phylum_level_taxa_between_the_seamounts_analysed_in_this_manuscript_In_addition_we_have_a_supplementary_figure_graphically_sho/4702252 CC BY 4.0 CC-BY Microbiology Ecology southwest indian ridge microbe biogeography dynamic frontal systems Text Journal contribution 2017 ftroysocietyfig https://doi.org/10.6084/m9.figshare.4702252.v1 2022-01-01T19:56:44Z Dispersal limitation, not just environmental selection, plays an important role in microbial biogeography. The distance–decay relationship is thought to be weak in habitats where dispersal is high, such as in the pelagic environment, where ocean currents facilitate microbial dispersal. Most studies of microbial community composition to date have observed little geographical heterogeneity on a regional scale (100 km).We present a study of microbial communities across a dynamic frontal zone in the South West Indian Ocean and investigate the spatial structure of the microbes with respect to the different water masses separated by these fronts.We collected 153 samples of free-living microorganisms from five seamounts located along a gradient from subtropical to subantarctic waters and across three depth layers, (i) the sub-surface chlorophyll maximum (approx. 40 m), (ii) the bottom of the euphotic zone (approx. 200 m) and (iii) the benthic boundary layer (300–2000 m). Diversity and abundance of microbial operational taxonomic units (OTUs) was assessed by amplification and sequencing of the 16S rRNA gene on an Illumina MiSeq platform.Multivariate analyses showed that microbial communities were structured more strongly by depth than by latitude, with similar phyla occurring within each depth stratum across seamounts. The deep layer was homogeneous across the entire survey area, corresponding to the spread of Antarctic intermediate water. However, within both the sub-surface layer and the intermediate depth stratum there was evidence for OTU turnover across fronts. The microbiome of these layers appears to be divided into three distinct biological regimes corresponding to the subantarctic surface water, the convergence zone and subtropical. We show that microbial biogeography across depth and latitudinal gradients is linked to the water-masses the microbes persist in, resulting in regional patterns of microbial biogeography, that correspond to the regional scale physical oceanography. Other Non-Article Part of Journal/Newspaper Antarc* Antarctic The Royal Society: Figshare Antarctic Indian
institution Open Polar
collection The Royal Society: Figshare
op_collection_id ftroysocietyfig
language unknown
topic Microbiology
Ecology
southwest indian ridge
microbe biogeography
dynamic frontal systems
spellingShingle Microbiology
Ecology
southwest indian ridge
microbe biogeography
dynamic frontal systems
Anni Djurhuus
Philipp H. Boersch-Supan
Svein-Ole Mikalsen
Alex D. Rogers
Supplementary Material The supplementary information contains four figures S1-S4. These figures depict the abundance, richness, and phylum level taxa between the seamounts analysed in this manuscript. In addition, we have a supplementary figure graphically showing the error output from the Multivariate Regression Trees run on the microbial and environmental data. from Microbe biogeography tracks water-masses in a dynamic oceanic frontal system
topic_facet Microbiology
Ecology
southwest indian ridge
microbe biogeography
dynamic frontal systems
description Dispersal limitation, not just environmental selection, plays an important role in microbial biogeography. The distance–decay relationship is thought to be weak in habitats where dispersal is high, such as in the pelagic environment, where ocean currents facilitate microbial dispersal. Most studies of microbial community composition to date have observed little geographical heterogeneity on a regional scale (100 km).We present a study of microbial communities across a dynamic frontal zone in the South West Indian Ocean and investigate the spatial structure of the microbes with respect to the different water masses separated by these fronts.We collected 153 samples of free-living microorganisms from five seamounts located along a gradient from subtropical to subantarctic waters and across three depth layers, (i) the sub-surface chlorophyll maximum (approx. 40 m), (ii) the bottom of the euphotic zone (approx. 200 m) and (iii) the benthic boundary layer (300–2000 m). Diversity and abundance of microbial operational taxonomic units (OTUs) was assessed by amplification and sequencing of the 16S rRNA gene on an Illumina MiSeq platform.Multivariate analyses showed that microbial communities were structured more strongly by depth than by latitude, with similar phyla occurring within each depth stratum across seamounts. The deep layer was homogeneous across the entire survey area, corresponding to the spread of Antarctic intermediate water. However, within both the sub-surface layer and the intermediate depth stratum there was evidence for OTU turnover across fronts. The microbiome of these layers appears to be divided into three distinct biological regimes corresponding to the subantarctic surface water, the convergence zone and subtropical. We show that microbial biogeography across depth and latitudinal gradients is linked to the water-masses the microbes persist in, resulting in regional patterns of microbial biogeography, that correspond to the regional scale physical oceanography.
format Other Non-Article Part of Journal/Newspaper
author Anni Djurhuus
Philipp H. Boersch-Supan
Svein-Ole Mikalsen
Alex D. Rogers
author_facet Anni Djurhuus
Philipp H. Boersch-Supan
Svein-Ole Mikalsen
Alex D. Rogers
author_sort Anni Djurhuus
title Supplementary Material The supplementary information contains four figures S1-S4. These figures depict the abundance, richness, and phylum level taxa between the seamounts analysed in this manuscript. In addition, we have a supplementary figure graphically showing the error output from the Multivariate Regression Trees run on the microbial and environmental data. from Microbe biogeography tracks water-masses in a dynamic oceanic frontal system
title_short Supplementary Material The supplementary information contains four figures S1-S4. These figures depict the abundance, richness, and phylum level taxa between the seamounts analysed in this manuscript. In addition, we have a supplementary figure graphically showing the error output from the Multivariate Regression Trees run on the microbial and environmental data. from Microbe biogeography tracks water-masses in a dynamic oceanic frontal system
title_full Supplementary Material The supplementary information contains four figures S1-S4. These figures depict the abundance, richness, and phylum level taxa between the seamounts analysed in this manuscript. In addition, we have a supplementary figure graphically showing the error output from the Multivariate Regression Trees run on the microbial and environmental data. from Microbe biogeography tracks water-masses in a dynamic oceanic frontal system
title_fullStr Supplementary Material The supplementary information contains four figures S1-S4. These figures depict the abundance, richness, and phylum level taxa between the seamounts analysed in this manuscript. In addition, we have a supplementary figure graphically showing the error output from the Multivariate Regression Trees run on the microbial and environmental data. from Microbe biogeography tracks water-masses in a dynamic oceanic frontal system
title_full_unstemmed Supplementary Material The supplementary information contains four figures S1-S4. These figures depict the abundance, richness, and phylum level taxa between the seamounts analysed in this manuscript. In addition, we have a supplementary figure graphically showing the error output from the Multivariate Regression Trees run on the microbial and environmental data. from Microbe biogeography tracks water-masses in a dynamic oceanic frontal system
title_sort supplementary material the supplementary information contains four figures s1-s4. these figures depict the abundance, richness, and phylum level taxa between the seamounts analysed in this manuscript. in addition, we have a supplementary figure graphically showing the error output from the multivariate regression trees run on the microbial and environmental data. from microbe biogeography tracks water-masses in a dynamic oceanic frontal system
publishDate 2017
url https://doi.org/10.6084/m9.figshare.4702252.v1
https://figshare.com/articles/journal_contribution/Supplementary_Material_The_supplementary_information_contains_four_figures_S1-S4_These_figures_depict_the_abundance_richness_and_phylum_level_taxa_between_the_seamounts_analysed_in_this_manuscript_In_addition_we_have_a_supplementary_figure_graphically_sho/4702252
geographic Antarctic
Indian
geographic_facet Antarctic
Indian
genre Antarc*
Antarctic
genre_facet Antarc*
Antarctic
op_relation doi:10.6084/m9.figshare.4702252.v1
https://figshare.com/articles/journal_contribution/Supplementary_Material_The_supplementary_information_contains_four_figures_S1-S4_These_figures_depict_the_abundance_richness_and_phylum_level_taxa_between_the_seamounts_analysed_in_this_manuscript_In_addition_we_have_a_supplementary_figure_graphically_sho/4702252
op_rights CC BY 4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.6084/m9.figshare.4702252.v1
_version_ 1766264857631391744