A single pdf file, title Supplementary Material, containing more technical description of the particle tracking model and some additional figures. These are not required to support the described results but contain more in depth results and useful information for reproducing the results. from Sensitivity of marine protected area network connectivity to atmospheric variability

International efforts are underway to establish well-connected systems of marine protected areas (MPAs) covering at least 10% of the ocean by 2020. But the nature and dynamics of ocean ecosystem connectivity are poorly understood, with unresolved effects of climate variability. We used 40-year runs...

Full description

Bibliographic Details
Main Authors: Alan D. Fox, Lea-Anne Henry, David W. Corne, J. Murray Roberts
Format: Other Non-Article Part of Journal/Newspaper
Language:unknown
Published: 2016
Subjects:
Online Access:https://doi.org/10.6084/m9.figshare.4206174.v3
https://figshare.com/articles/journal_contribution/A_single_pdf_file_title_Supplementary_Material_containing_more_technical_description_of_the_particle_tracking_model_and_some_additional_figures_These_are_not_required_to_support_the_described_results_but_contain_more_in_depth_results_and_useful_informatio/4206174
Description
Summary:International efforts are underway to establish well-connected systems of marine protected areas (MPAs) covering at least 10% of the ocean by 2020. But the nature and dynamics of ocean ecosystem connectivity are poorly understood, with unresolved effects of climate variability. We used 40-year runs of a particle tracking model to examine the sensitivity of an MPA network for habitat-forming cold-water corals in the northeast Atlantic to changes in larval dispersal driven by atmospheric cycles and larval behaviour. Trajectories of Lophelia pertusa larvae were strongly correlated to the North Atlantic Oscillation (NAO), the dominant pattern of interannual atmospheric circulation variability over the northeast Atlantic. Variability in trajectories significantly altered network connectivity and source-sink dynamics, with positive phase NAO conditions producing a well-connected but asymmetrical network connected from west to east. Negative phase NAO produced reduced connectivity, but notably some larvae tracked westward-flowing currents towards coral populations on the mid-Atlantic ridge. Graph theoretical metrics demonstrate critical roles played by seamounts and offshore banks in larval supply and maintaining connectivity across the network. Larval longevity and behaviour mediated dispersal and connectivity, with shorter lived and passive larvae associated with reduced connectivity. We conclude that the existing MPA network is vulnerable to atmospheric-driven changes in ocean circulation.