North Atlantic sea-floor spreading rates: implications for the Tertiary development of inversion structures of the Norwegian–Greenland Sea

Tertiary development of the Norwegian continental margin was dominated by the opening of the Arctic–North Atlantic Ocean. The correct identification of magnetic anomalies and their ages and the analysis of spreading rates during the formation of this ocean are important in understanding the developm...

Full description

Bibliographic Details
Main Authors: Mosar, Jon, Lewis, Gavin, Torsvik, Trond H.
Language:English
Published: 2005
Subjects:
Online Access:http://doc.rero.ch/record/4928/files/1_mosar_nas.pdf
id ftreroch:oai:doc.rero.ch:20050720140056-ID
record_format openpolar
spelling ftreroch:oai:doc.rero.ch:20050720140056-ID 2023-05-15T15:15:15+02:00 North Atlantic sea-floor spreading rates: implications for the Tertiary development of inversion structures of the Norwegian–Greenland Sea Mosar, Jon Lewis, Gavin Torsvik, Trond H. 2005-07-20T12:03:07Z http://doc.rero.ch/record/4928/files/1_mosar_nas.pdf eng eng http://doc.rero.ch/record/4928/files/1_mosar_nas.pdf 2005 ftreroch 2023-02-16T17:21:41Z Tertiary development of the Norwegian continental margin was dominated by the opening of the Arctic–North Atlantic Ocean. The correct identification of magnetic anomalies and their ages and the analysis of spreading rates during the formation of this ocean are important in understanding the development of the region and specifically the history of its passive margins. Three ocean domains, the Ægir, Reykjanes and Mohns regions, were investigated in an effort to understand the lateral changes in structural development of the passive margin after continental break-up. Spreading rates generally slowed down from 2 cm a⁻¹ after Early Eocene initiation of sea-floor spreading, to values around 0.5 cm a⁻¹ in Oligocene time. An increase in spreading rates to around 1 cm a⁻¹ coincided with the positioning of the Iceland hotspot under the North Atlantic mid-ocean ridge. At the same time, the European plate changed its absolute plate motion from a north-directed drift to a motion more towards the east. The location of inversion structures in the Vøring and Faeroes Basin rather than in the Møre Basin is related to differences in spreading rates. The Mohns and the Reykjanes Ridges produced more ocean floor than the Ægir–Kolbeinsey Ridges. Asymmetric ocean-floor formation in the Ægir Ridge led to differential stress at the base of the lithosphere, which probably explains the absence of inversion features in the Møre Basin (less mantle drag). Furthermore, upper plate margins such as the Vøring Basin and possibly the Faeroe Basin have a lower compressional strength than lower plate margins such as the Møre Basin, and therefore preferentially developed inversion structures. Along the transform boundaries separating the domains, additional stress probably built up along extension of the transform zones into the extended continental crust. This additional stress probably also assisted initiation of the inversion structures in the Vøring Basin and the Faeroes area. The amplification of the inversion structures in the Vøring Basin and ... Other/Unknown Material Arctic Greenland Greenland Sea Iceland Kolbeinsey North Atlantic RERO DOC Digital Library Arctic Greenland Kolbeinsey ENVELOPE(-18.687,-18.687,67.149,67.149) Reykjanes ENVELOPE(-22.250,-22.250,65.467,65.467)
institution Open Polar
collection RERO DOC Digital Library
op_collection_id ftreroch
language English
description Tertiary development of the Norwegian continental margin was dominated by the opening of the Arctic–North Atlantic Ocean. The correct identification of magnetic anomalies and their ages and the analysis of spreading rates during the formation of this ocean are important in understanding the development of the region and specifically the history of its passive margins. Three ocean domains, the Ægir, Reykjanes and Mohns regions, were investigated in an effort to understand the lateral changes in structural development of the passive margin after continental break-up. Spreading rates generally slowed down from 2 cm a⁻¹ after Early Eocene initiation of sea-floor spreading, to values around 0.5 cm a⁻¹ in Oligocene time. An increase in spreading rates to around 1 cm a⁻¹ coincided with the positioning of the Iceland hotspot under the North Atlantic mid-ocean ridge. At the same time, the European plate changed its absolute plate motion from a north-directed drift to a motion more towards the east. The location of inversion structures in the Vøring and Faeroes Basin rather than in the Møre Basin is related to differences in spreading rates. The Mohns and the Reykjanes Ridges produced more ocean floor than the Ægir–Kolbeinsey Ridges. Asymmetric ocean-floor formation in the Ægir Ridge led to differential stress at the base of the lithosphere, which probably explains the absence of inversion features in the Møre Basin (less mantle drag). Furthermore, upper plate margins such as the Vøring Basin and possibly the Faeroe Basin have a lower compressional strength than lower plate margins such as the Møre Basin, and therefore preferentially developed inversion structures. Along the transform boundaries separating the domains, additional stress probably built up along extension of the transform zones into the extended continental crust. This additional stress probably also assisted initiation of the inversion structures in the Vøring Basin and the Faeroes area. The amplification of the inversion structures in the Vøring Basin and ...
author Mosar, Jon
Lewis, Gavin
Torsvik, Trond H.
spellingShingle Mosar, Jon
Lewis, Gavin
Torsvik, Trond H.
North Atlantic sea-floor spreading rates: implications for the Tertiary development of inversion structures of the Norwegian–Greenland Sea
author_facet Mosar, Jon
Lewis, Gavin
Torsvik, Trond H.
author_sort Mosar, Jon
title North Atlantic sea-floor spreading rates: implications for the Tertiary development of inversion structures of the Norwegian–Greenland Sea
title_short North Atlantic sea-floor spreading rates: implications for the Tertiary development of inversion structures of the Norwegian–Greenland Sea
title_full North Atlantic sea-floor spreading rates: implications for the Tertiary development of inversion structures of the Norwegian–Greenland Sea
title_fullStr North Atlantic sea-floor spreading rates: implications for the Tertiary development of inversion structures of the Norwegian–Greenland Sea
title_full_unstemmed North Atlantic sea-floor spreading rates: implications for the Tertiary development of inversion structures of the Norwegian–Greenland Sea
title_sort north atlantic sea-floor spreading rates: implications for the tertiary development of inversion structures of the norwegian–greenland sea
publishDate 2005
url http://doc.rero.ch/record/4928/files/1_mosar_nas.pdf
long_lat ENVELOPE(-18.687,-18.687,67.149,67.149)
ENVELOPE(-22.250,-22.250,65.467,65.467)
geographic Arctic
Greenland
Kolbeinsey
Reykjanes
geographic_facet Arctic
Greenland
Kolbeinsey
Reykjanes
genre Arctic
Greenland
Greenland Sea
Iceland
Kolbeinsey
North Atlantic
genre_facet Arctic
Greenland
Greenland Sea
Iceland
Kolbeinsey
North Atlantic
op_relation http://doc.rero.ch/record/4928/files/1_mosar_nas.pdf
_version_ 1766345617374707712