Greenland climate change: from the past to the future
Climate archives available from deep sea and marine shelf sediments, glaciers, lakes, and ice cores in and around Greenland allow us to place the current trends in regional climate, ice sheet dynamics, and land surface changes in a broader perspective. We show that, during the last decade (2000s), a...
Published in: | Wiley Interdisciplinary Reviews: Climate Change |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | unknown |
Subjects: | |
Online Access: | https://doi.org/10.1002/wcc.186 |
id |
ftrepec:oai:RePEc:wly:wirecc:v:3:y:2012:i:5:p:427-449 |
---|---|
record_format |
openpolar |
spelling |
ftrepec:oai:RePEc:wly:wirecc:v:3:y:2012:i:5:p:427-449 2023-05-15T16:25:09+02:00 Greenland climate change: from the past to the future Valérie Masson‐Delmotte Didier Swingedouw Amaëlle Landais Marit‐Solveig Seidenkrantz Emilie Gauthier Vincent Bichet Charly Massa Bianca Perren Vincent Jomelli Gudfinna Adalgeirsdottir Jens Hesselbjerg Christensen Jette Arneborg Uma Bhatt Donald A. Walker Bo Elberling Fabien Gillet‐Chaulet Catherine Ritz Hubert Gallée Michiel van den Broeke Xavier Fettweis Anne de Vernal Bo Vinther https://doi.org/10.1002/wcc.186 unknown https://doi.org/10.1002/wcc.186 article ftrepec https://doi.org/10.1002/wcc.186 2020-12-04T13:31:18Z Climate archives available from deep sea and marine shelf sediments, glaciers, lakes, and ice cores in and around Greenland allow us to place the current trends in regional climate, ice sheet dynamics, and land surface changes in a broader perspective. We show that, during the last decade (2000s), atmospheric and sea surface temperatures are reaching levels last encountered millennia ago, when northern high latitude summer insolation was higher due to a different orbital configuration. Records from lake sediments in southern Greenland document major environmental and climatic conditions during the last 10,000 years, highlighting the role of soil dynamics in past vegetation changes, and stressing the growing anthropogenic impacts on soil erosion during the recent decades. Furthermore, past and present changes in atmospheric and oceanic heat advection appear to strongly influence both regional climate and ice sheet dynamics. Projections from climate models are investigated to quantify the magnitude and rates of future changes in Greenland temperature, which may be faster than past abrupt events occurring under interglacial conditions. Within one century, in response to increasing greenhouse gas emissions, Greenland may reach temperatures last time encountered during the last interglacial period, approximately 125,000 years ago. We review and discuss whether analogies between the last interglacial and future changes are reasonable, because of the different seasonal impacts of orbital and greenhouse gas forcings. Over several decades to centuries, future Greenland melt may act as a negative feedback, limiting regional warming albeit with global sea level and climatic impacts. WIREs Clim Change 2012 doi:10.1002/wcc.186 This article is categorized under: Paleoclimates and Current Trends > Modern Climate Change Article in Journal/Newspaper Greenland Ice Sheet RePEc (Research Papers in Economics) Greenland Wiley Interdisciplinary Reviews: Climate Change 3 5 427 449 |
institution |
Open Polar |
collection |
RePEc (Research Papers in Economics) |
op_collection_id |
ftrepec |
language |
unknown |
description |
Climate archives available from deep sea and marine shelf sediments, glaciers, lakes, and ice cores in and around Greenland allow us to place the current trends in regional climate, ice sheet dynamics, and land surface changes in a broader perspective. We show that, during the last decade (2000s), atmospheric and sea surface temperatures are reaching levels last encountered millennia ago, when northern high latitude summer insolation was higher due to a different orbital configuration. Records from lake sediments in southern Greenland document major environmental and climatic conditions during the last 10,000 years, highlighting the role of soil dynamics in past vegetation changes, and stressing the growing anthropogenic impacts on soil erosion during the recent decades. Furthermore, past and present changes in atmospheric and oceanic heat advection appear to strongly influence both regional climate and ice sheet dynamics. Projections from climate models are investigated to quantify the magnitude and rates of future changes in Greenland temperature, which may be faster than past abrupt events occurring under interglacial conditions. Within one century, in response to increasing greenhouse gas emissions, Greenland may reach temperatures last time encountered during the last interglacial period, approximately 125,000 years ago. We review and discuss whether analogies between the last interglacial and future changes are reasonable, because of the different seasonal impacts of orbital and greenhouse gas forcings. Over several decades to centuries, future Greenland melt may act as a negative feedback, limiting regional warming albeit with global sea level and climatic impacts. WIREs Clim Change 2012 doi:10.1002/wcc.186 This article is categorized under: Paleoclimates and Current Trends > Modern Climate Change |
format |
Article in Journal/Newspaper |
author |
Valérie Masson‐Delmotte Didier Swingedouw Amaëlle Landais Marit‐Solveig Seidenkrantz Emilie Gauthier Vincent Bichet Charly Massa Bianca Perren Vincent Jomelli Gudfinna Adalgeirsdottir Jens Hesselbjerg Christensen Jette Arneborg Uma Bhatt Donald A. Walker Bo Elberling Fabien Gillet‐Chaulet Catherine Ritz Hubert Gallée Michiel van den Broeke Xavier Fettweis Anne de Vernal Bo Vinther |
spellingShingle |
Valérie Masson‐Delmotte Didier Swingedouw Amaëlle Landais Marit‐Solveig Seidenkrantz Emilie Gauthier Vincent Bichet Charly Massa Bianca Perren Vincent Jomelli Gudfinna Adalgeirsdottir Jens Hesselbjerg Christensen Jette Arneborg Uma Bhatt Donald A. Walker Bo Elberling Fabien Gillet‐Chaulet Catherine Ritz Hubert Gallée Michiel van den Broeke Xavier Fettweis Anne de Vernal Bo Vinther Greenland climate change: from the past to the future |
author_facet |
Valérie Masson‐Delmotte Didier Swingedouw Amaëlle Landais Marit‐Solveig Seidenkrantz Emilie Gauthier Vincent Bichet Charly Massa Bianca Perren Vincent Jomelli Gudfinna Adalgeirsdottir Jens Hesselbjerg Christensen Jette Arneborg Uma Bhatt Donald A. Walker Bo Elberling Fabien Gillet‐Chaulet Catherine Ritz Hubert Gallée Michiel van den Broeke Xavier Fettweis Anne de Vernal Bo Vinther |
author_sort |
Valérie Masson‐Delmotte |
title |
Greenland climate change: from the past to the future |
title_short |
Greenland climate change: from the past to the future |
title_full |
Greenland climate change: from the past to the future |
title_fullStr |
Greenland climate change: from the past to the future |
title_full_unstemmed |
Greenland climate change: from the past to the future |
title_sort |
greenland climate change: from the past to the future |
url |
https://doi.org/10.1002/wcc.186 |
geographic |
Greenland |
geographic_facet |
Greenland |
genre |
Greenland Ice Sheet |
genre_facet |
Greenland Ice Sheet |
op_relation |
https://doi.org/10.1002/wcc.186 |
op_doi |
https://doi.org/10.1002/wcc.186 |
container_title |
Wiley Interdisciplinary Reviews: Climate Change |
container_volume |
3 |
container_issue |
5 |
container_start_page |
427 |
op_container_end_page |
449 |
_version_ |
1766013837550551040 |