A map of large Canadian eskers from Landsat satellite imagery

Meltwater drainage systems beneath ice sheets are a poorly understood, yet fundamentally important environment for understanding glacier dynamics, which are strongly influenced by the nature and quantity of meltwater entering the subglacial system. Contemporary sub-ice sheet meltwater drainage syste...

Full description

Bibliographic Details
Main Authors: Robert D. Storrar, Chris R. Stokes, David J.A. Evans
Format: Article in Journal/Newspaper
Language:unknown
Subjects:
Online Access:http://hdl.handle.net/10.1080/17445647.2013.815591
id ftrepec:oai:RePEc:taf:tjomxx:v:9:y:2013:i:3:p:456-473
record_format openpolar
spelling ftrepec:oai:RePEc:taf:tjomxx:v:9:y:2013:i:3:p:456-473 2023-05-15T16:22:28+02:00 A map of large Canadian eskers from Landsat satellite imagery Robert D. Storrar Chris R. Stokes David J.A. Evans http://hdl.handle.net/10.1080/17445647.2013.815591 unknown http://hdl.handle.net/10.1080/17445647.2013.815591 article ftrepec 2020-12-04T13:32:22Z Meltwater drainage systems beneath ice sheets are a poorly understood, yet fundamentally important environment for understanding glacier dynamics, which are strongly influenced by the nature and quantity of meltwater entering the subglacial system. Contemporary sub-ice sheet meltwater drainage systems are notoriously difficult to study, but we can utilise exposed beds of palaeo-ice sheets to further our understanding of subglacial drainage. In particular, eskers record deposition in glacial drainage channels and are widespread on the exposed beds of former ice sheets. This paper presents a 1:5,000,000 scale map of >20,000 large eskers (typically > 2 km long) deposited by the Laurentide Ice Sheet (LIS), mapped from Landsat imagery of Canada, in order to establish a dataset suitable for analysis of esker morphometry and drainage patterns at the ice sheet scale. Comparisons between eskers mapped from Landsat imagery and aerial photographs indicate that, in most areas, approximately 75% of eskers are detected using Landsat. The data presented in this map build on and extend previous work in providing a consistent map of an unprecedented sample of eskers for quantitative analysis. It offers an alternative perspective on the problems surrounding ice-sheet meltwater drainage and can be used for: (i) detailed investigations of esker morphometry and distribution from a large sample size; (ii), testing of numerical models of meltwater drainage routing that predict esker characteristics (e.g. channel spacing, sinuosity), (iii) assessment of the factors that control esker location and formation; and (iv), a refined understanding of ice margin configurations during retreat of the LIS. Article in Journal/Newspaper glacier* Ice Sheet RePEc (Research Papers in Economics) Canada
institution Open Polar
collection RePEc (Research Papers in Economics)
op_collection_id ftrepec
language unknown
description Meltwater drainage systems beneath ice sheets are a poorly understood, yet fundamentally important environment for understanding glacier dynamics, which are strongly influenced by the nature and quantity of meltwater entering the subglacial system. Contemporary sub-ice sheet meltwater drainage systems are notoriously difficult to study, but we can utilise exposed beds of palaeo-ice sheets to further our understanding of subglacial drainage. In particular, eskers record deposition in glacial drainage channels and are widespread on the exposed beds of former ice sheets. This paper presents a 1:5,000,000 scale map of >20,000 large eskers (typically > 2 km long) deposited by the Laurentide Ice Sheet (LIS), mapped from Landsat imagery of Canada, in order to establish a dataset suitable for analysis of esker morphometry and drainage patterns at the ice sheet scale. Comparisons between eskers mapped from Landsat imagery and aerial photographs indicate that, in most areas, approximately 75% of eskers are detected using Landsat. The data presented in this map build on and extend previous work in providing a consistent map of an unprecedented sample of eskers for quantitative analysis. It offers an alternative perspective on the problems surrounding ice-sheet meltwater drainage and can be used for: (i) detailed investigations of esker morphometry and distribution from a large sample size; (ii), testing of numerical models of meltwater drainage routing that predict esker characteristics (e.g. channel spacing, sinuosity), (iii) assessment of the factors that control esker location and formation; and (iv), a refined understanding of ice margin configurations during retreat of the LIS.
format Article in Journal/Newspaper
author Robert D. Storrar
Chris R. Stokes
David J.A. Evans
spellingShingle Robert D. Storrar
Chris R. Stokes
David J.A. Evans
A map of large Canadian eskers from Landsat satellite imagery
author_facet Robert D. Storrar
Chris R. Stokes
David J.A. Evans
author_sort Robert D. Storrar
title A map of large Canadian eskers from Landsat satellite imagery
title_short A map of large Canadian eskers from Landsat satellite imagery
title_full A map of large Canadian eskers from Landsat satellite imagery
title_fullStr A map of large Canadian eskers from Landsat satellite imagery
title_full_unstemmed A map of large Canadian eskers from Landsat satellite imagery
title_sort map of large canadian eskers from landsat satellite imagery
url http://hdl.handle.net/10.1080/17445647.2013.815591
geographic Canada
geographic_facet Canada
genre glacier*
Ice Sheet
genre_facet glacier*
Ice Sheet
op_relation http://hdl.handle.net/10.1080/17445647.2013.815591
_version_ 1766010447213887488