Quantifying Migration Behaviour Using Net Squared Displacement Approach: Clarifications and Caveats

Estimating migration parameters of individuals and populations is vital for their conservation and management. Studies on animal movements and migration often depend upon location data from tracked animals and it is important that such data are appropriately analyzed for reliable estimates of migrat...

Full description

Bibliographic Details
Main Authors: Navinder J Singh, Andrew M Allen, Göran Ericsson
Format: Article in Journal/Newspaper
Language:unknown
Subjects:
Online Access:https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0149594
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0149594&type=printable
id ftrepec:oai:RePEc:plo:pone00:0149594
record_format openpolar
spelling ftrepec:oai:RePEc:plo:pone00:0149594 2023-05-15T13:13:46+02:00 Quantifying Migration Behaviour Using Net Squared Displacement Approach: Clarifications and Caveats Navinder J Singh Andrew M Allen Göran Ericsson https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0149594 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0149594&type=printable unknown https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0149594 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0149594&type=printable article ftrepec 2020-12-04T13:35:37Z Estimating migration parameters of individuals and populations is vital for their conservation and management. Studies on animal movements and migration often depend upon location data from tracked animals and it is important that such data are appropriately analyzed for reliable estimates of migration and effective management of moving animals. The Net Squared Displacement (NSD) approach for modelling animal movement is being increasingly used as it can objectively quantify migration characteristics and separate different types of movements from migration. However, the ability of NSD to properly classify the movement patterns of individuals has been criticized and issues related to study design arise with respect to starting locations of the data/animals, data sampling regime and extent of movement of species. We address the issues raised over NSD using tracking data from 319 moose (Alces alces) in Sweden. Moose is an ideal species to test this approach, as it can be sedentary, nomadic, dispersing or migratory and individuals vary in their extent, timing and duration of migration. We propose a two-step process of using the NSD approach by first classifying movement modes using mean squared displacement (MSD) instead of NSD and then estimating the extent, duration and timing of migration using NSD. We show that the NSD approach is robust to the choice of starting dates except when the start date occurs during the migratory phase. We also show that the starting location of the animal has a marginal influence on the correct quantification of migration characteristics. The number of locations per day (1–48) did not significantly affect the performance of non-linear mixed effects models, which correctly distinguished migration from other movement types, however, high-resolution data had a significant negative influence on estimates for the timing of migrations. The extent of movement, however, had an effect on the classification of movements, and individuals undertaking short- distance migrations can be misclassified as other movements such as sedentary or nomadic. Our study raises important considerations for designing, analysing and interpreting movement ecology studies, and how these should be determined by the biology of the species and the ecological and conservation questions in focus. Article in Journal/Newspaper Alces alces RePEc (Research Papers in Economics)
institution Open Polar
collection RePEc (Research Papers in Economics)
op_collection_id ftrepec
language unknown
description Estimating migration parameters of individuals and populations is vital for their conservation and management. Studies on animal movements and migration often depend upon location data from tracked animals and it is important that such data are appropriately analyzed for reliable estimates of migration and effective management of moving animals. The Net Squared Displacement (NSD) approach for modelling animal movement is being increasingly used as it can objectively quantify migration characteristics and separate different types of movements from migration. However, the ability of NSD to properly classify the movement patterns of individuals has been criticized and issues related to study design arise with respect to starting locations of the data/animals, data sampling regime and extent of movement of species. We address the issues raised over NSD using tracking data from 319 moose (Alces alces) in Sweden. Moose is an ideal species to test this approach, as it can be sedentary, nomadic, dispersing or migratory and individuals vary in their extent, timing and duration of migration. We propose a two-step process of using the NSD approach by first classifying movement modes using mean squared displacement (MSD) instead of NSD and then estimating the extent, duration and timing of migration using NSD. We show that the NSD approach is robust to the choice of starting dates except when the start date occurs during the migratory phase. We also show that the starting location of the animal has a marginal influence on the correct quantification of migration characteristics. The number of locations per day (1–48) did not significantly affect the performance of non-linear mixed effects models, which correctly distinguished migration from other movement types, however, high-resolution data had a significant negative influence on estimates for the timing of migrations. The extent of movement, however, had an effect on the classification of movements, and individuals undertaking short- distance migrations can be misclassified as other movements such as sedentary or nomadic. Our study raises important considerations for designing, analysing and interpreting movement ecology studies, and how these should be determined by the biology of the species and the ecological and conservation questions in focus.
format Article in Journal/Newspaper
author Navinder J Singh
Andrew M Allen
Göran Ericsson
spellingShingle Navinder J Singh
Andrew M Allen
Göran Ericsson
Quantifying Migration Behaviour Using Net Squared Displacement Approach: Clarifications and Caveats
author_facet Navinder J Singh
Andrew M Allen
Göran Ericsson
author_sort Navinder J Singh
title Quantifying Migration Behaviour Using Net Squared Displacement Approach: Clarifications and Caveats
title_short Quantifying Migration Behaviour Using Net Squared Displacement Approach: Clarifications and Caveats
title_full Quantifying Migration Behaviour Using Net Squared Displacement Approach: Clarifications and Caveats
title_fullStr Quantifying Migration Behaviour Using Net Squared Displacement Approach: Clarifications and Caveats
title_full_unstemmed Quantifying Migration Behaviour Using Net Squared Displacement Approach: Clarifications and Caveats
title_sort quantifying migration behaviour using net squared displacement approach: clarifications and caveats
url https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0149594
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0149594&type=printable
genre Alces alces
genre_facet Alces alces
op_relation https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0149594
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0149594&type=printable
_version_ 1766260302451572736