Numerical study on gas production from methane hydrate reservoir by depressurization in a reactor

Gas hydrate is an abundant natural resource that has attracted much attention around the world. This paper aims at analyzing the gas production potential of methane hydrate reservoir by depressurization. The physical model of a cylindrical reactor is established and numerically simulated by using TO...

Full description

Bibliographic Details
Main Authors: Shao, Yazhou, Yang, Longbin, Zhang, Qun, Wang, Shidong, Wang, Kunfang, Xu, Runzhang
Format: Article in Journal/Newspaper
Language:unknown
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1364032120306183
id ftrepec:oai:RePEc:eee:rensus:v:134:y:2020:i:c:s1364032120306183
record_format openpolar
spelling ftrepec:oai:RePEc:eee:rensus:v:134:y:2020:i:c:s1364032120306183 2024-04-14T08:14:52+00:00 Numerical study on gas production from methane hydrate reservoir by depressurization in a reactor Shao, Yazhou Yang, Longbin Zhang, Qun Wang, Shidong Wang, Kunfang Xu, Runzhang http://www.sciencedirect.com/science/article/pii/S1364032120306183 unknown http://www.sciencedirect.com/science/article/pii/S1364032120306183 article ftrepec 2024-03-19T10:37:34Z Gas hydrate is an abundant natural resource that has attracted much attention around the world. This paper aims at analyzing the gas production potential of methane hydrate reservoir by depressurization. The physical model of a cylindrical reactor is established and numerically simulated by using TOUGH + HYDRATE_v1.5. Based on the experimental parameters applied in our recent work, the cases are set to different wellhead pressures in a relatively broad range, covering that with ice formation and different thermal conductivities, especially involving ice formation. The simulation results indicate that for three cases with relatively higher wellhead pressures, the dissociation rate and the cumulative gas volume at the wellhead in the case of PW = 2.0 MPa is much higher than in others due to its highest driving force. At the same wellhead pressure, increasing the thermal conductivity will slightly increase the gas production rate while not change the final gas production at the wellhead. Heat transfer shows an important role in hydrate dissociation, and the temperature gradient appears in the reservoir. Moreover, ice formation occurs under all three cases with different thermal conductivities, which indicates that increasing the thermal conductivity can not alleviate the rapid decrease of the reservoir temperature or ice formation caused by the higher driving force. There is an optimal pressure in which the gas production rate reaches the maximum by balancing the inhibition of ice formation and driving force. For the cases with ice formation, different production pressures do not yield significant differences in the hydrate dissociation characteristics. In actual exploitation, all the affecting factors should be considered to fulfill the most economical and efficient exploitation. Hydrate; Dissociation; Depressurization; Ice formation; Thermal conductivity; Gas production rate; Production pressure; Article in Journal/Newspaper Methane hydrate RePEc (Research Papers in Economics)
institution Open Polar
collection RePEc (Research Papers in Economics)
op_collection_id ftrepec
language unknown
description Gas hydrate is an abundant natural resource that has attracted much attention around the world. This paper aims at analyzing the gas production potential of methane hydrate reservoir by depressurization. The physical model of a cylindrical reactor is established and numerically simulated by using TOUGH + HYDRATE_v1.5. Based on the experimental parameters applied in our recent work, the cases are set to different wellhead pressures in a relatively broad range, covering that with ice formation and different thermal conductivities, especially involving ice formation. The simulation results indicate that for three cases with relatively higher wellhead pressures, the dissociation rate and the cumulative gas volume at the wellhead in the case of PW = 2.0 MPa is much higher than in others due to its highest driving force. At the same wellhead pressure, increasing the thermal conductivity will slightly increase the gas production rate while not change the final gas production at the wellhead. Heat transfer shows an important role in hydrate dissociation, and the temperature gradient appears in the reservoir. Moreover, ice formation occurs under all three cases with different thermal conductivities, which indicates that increasing the thermal conductivity can not alleviate the rapid decrease of the reservoir temperature or ice formation caused by the higher driving force. There is an optimal pressure in which the gas production rate reaches the maximum by balancing the inhibition of ice formation and driving force. For the cases with ice formation, different production pressures do not yield significant differences in the hydrate dissociation characteristics. In actual exploitation, all the affecting factors should be considered to fulfill the most economical and efficient exploitation. Hydrate; Dissociation; Depressurization; Ice formation; Thermal conductivity; Gas production rate; Production pressure;
format Article in Journal/Newspaper
author Shao, Yazhou
Yang, Longbin
Zhang, Qun
Wang, Shidong
Wang, Kunfang
Xu, Runzhang
spellingShingle Shao, Yazhou
Yang, Longbin
Zhang, Qun
Wang, Shidong
Wang, Kunfang
Xu, Runzhang
Numerical study on gas production from methane hydrate reservoir by depressurization in a reactor
author_facet Shao, Yazhou
Yang, Longbin
Zhang, Qun
Wang, Shidong
Wang, Kunfang
Xu, Runzhang
author_sort Shao, Yazhou
title Numerical study on gas production from methane hydrate reservoir by depressurization in a reactor
title_short Numerical study on gas production from methane hydrate reservoir by depressurization in a reactor
title_full Numerical study on gas production from methane hydrate reservoir by depressurization in a reactor
title_fullStr Numerical study on gas production from methane hydrate reservoir by depressurization in a reactor
title_full_unstemmed Numerical study on gas production from methane hydrate reservoir by depressurization in a reactor
title_sort numerical study on gas production from methane hydrate reservoir by depressurization in a reactor
url http://www.sciencedirect.com/science/article/pii/S1364032120306183
genre Methane hydrate
genre_facet Methane hydrate
op_relation http://www.sciencedirect.com/science/article/pii/S1364032120306183
_version_ 1796313104226713600