Carbon dynamics modelization and biological community sensitivity to temperature in an oligotrophic freshwater Antarctic lake

Lake Limnopolar, located in one of the areas on Earth experiencing the strongest local warming, has been studied as a maritime Antarctic lake model by the Limnopolar Research Team during the last decade. Data collected during this period revealed the existence of an important meteorological interann...

Full description

Bibliographic Details
Main Authors: Villaescusa, Juan Antonio, Jørgensen, Sven Erik, Rochera, Carlos, Velázquez, David, Quesada, Antonio, Camacho, Antonio
Format: Article in Journal/Newspaper
Language:unknown
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0304380015001192
id ftrepec:oai:RePEc:eee:ecomod:v:319:y:2016:i:c:p:21-30
record_format openpolar
spelling ftrepec:oai:RePEc:eee:ecomod:v:319:y:2016:i:c:p:21-30 2024-04-14T08:02:12+00:00 Carbon dynamics modelization and biological community sensitivity to temperature in an oligotrophic freshwater Antarctic lake Villaescusa, Juan Antonio Jørgensen, Sven Erik Rochera, Carlos Velázquez, David Quesada, Antonio Camacho, Antonio http://www.sciencedirect.com/science/article/pii/S0304380015001192 unknown http://www.sciencedirect.com/science/article/pii/S0304380015001192 article ftrepec 2024-03-19T10:29:41Z Lake Limnopolar, located in one of the areas on Earth experiencing the strongest local warming, has been studied as a maritime Antarctic lake model by the Limnopolar Research Team during the last decade. Data collected during this period revealed the existence of an important meteorological interannual variability in the area of Byers Peninsula. With the aim of increasing the knowledge of this ecosystem and its sensibility to climate change as a model ecosystem, as well as to calibrate the extent of the interannual variability, a carbon flow model was developed partly describing its microbial food web. This preliminary model aims to describe part of the carbon dynamics, especially for bacterioplankton and associated factors, in this maritime Antarctic lake highly affected by temperature increase linked to regional warming. To describe the system, the effects of the variation of different forcing functions influencing the carbon flow within the microbial community, like temperature and irradiance, were studied. Among the studied factors, the sensitivity analysis showed the strongest response of the model to temperature changes. Consumption rates of organic matter by bacterioplankton, and therefore its abundance in lake water, greatly increased when temperature rise was higher. However, the highly variable meteorology over years in such an extreme environment causes that our model may fit well for some years, but fails to describe the system in years with contrasting meteorological conditions. Despite this assumption, the model reveals that maritime Antarctic lakes are very sensitive to temperature changes. This response can be monitored using eco-exergy, which allows a description of the system complexity. Due to this temperature sensitivity, the warming occurring in this area would lead to significant changes in the carbon flow, and consequently on the abundance of plankton in these systems. Maritime Antarctic lakes; Ecological model; Carbon flow; Bacterioplankton; Temperature sensitivity; Climate change; Article in Journal/Newspaper Antarc* Antarctic RePEc (Research Papers in Economics) Antarctic Byers ENVELOPE(-60.283,-60.283,-63.900,-63.900) Byers peninsula ENVELOPE(-61.066,-61.066,-62.633,-62.633)
institution Open Polar
collection RePEc (Research Papers in Economics)
op_collection_id ftrepec
language unknown
description Lake Limnopolar, located in one of the areas on Earth experiencing the strongest local warming, has been studied as a maritime Antarctic lake model by the Limnopolar Research Team during the last decade. Data collected during this period revealed the existence of an important meteorological interannual variability in the area of Byers Peninsula. With the aim of increasing the knowledge of this ecosystem and its sensibility to climate change as a model ecosystem, as well as to calibrate the extent of the interannual variability, a carbon flow model was developed partly describing its microbial food web. This preliminary model aims to describe part of the carbon dynamics, especially for bacterioplankton and associated factors, in this maritime Antarctic lake highly affected by temperature increase linked to regional warming. To describe the system, the effects of the variation of different forcing functions influencing the carbon flow within the microbial community, like temperature and irradiance, were studied. Among the studied factors, the sensitivity analysis showed the strongest response of the model to temperature changes. Consumption rates of organic matter by bacterioplankton, and therefore its abundance in lake water, greatly increased when temperature rise was higher. However, the highly variable meteorology over years in such an extreme environment causes that our model may fit well for some years, but fails to describe the system in years with contrasting meteorological conditions. Despite this assumption, the model reveals that maritime Antarctic lakes are very sensitive to temperature changes. This response can be monitored using eco-exergy, which allows a description of the system complexity. Due to this temperature sensitivity, the warming occurring in this area would lead to significant changes in the carbon flow, and consequently on the abundance of plankton in these systems. Maritime Antarctic lakes; Ecological model; Carbon flow; Bacterioplankton; Temperature sensitivity; Climate change;
format Article in Journal/Newspaper
author Villaescusa, Juan Antonio
Jørgensen, Sven Erik
Rochera, Carlos
Velázquez, David
Quesada, Antonio
Camacho, Antonio
spellingShingle Villaescusa, Juan Antonio
Jørgensen, Sven Erik
Rochera, Carlos
Velázquez, David
Quesada, Antonio
Camacho, Antonio
Carbon dynamics modelization and biological community sensitivity to temperature in an oligotrophic freshwater Antarctic lake
author_facet Villaescusa, Juan Antonio
Jørgensen, Sven Erik
Rochera, Carlos
Velázquez, David
Quesada, Antonio
Camacho, Antonio
author_sort Villaescusa, Juan Antonio
title Carbon dynamics modelization and biological community sensitivity to temperature in an oligotrophic freshwater Antarctic lake
title_short Carbon dynamics modelization and biological community sensitivity to temperature in an oligotrophic freshwater Antarctic lake
title_full Carbon dynamics modelization and biological community sensitivity to temperature in an oligotrophic freshwater Antarctic lake
title_fullStr Carbon dynamics modelization and biological community sensitivity to temperature in an oligotrophic freshwater Antarctic lake
title_full_unstemmed Carbon dynamics modelization and biological community sensitivity to temperature in an oligotrophic freshwater Antarctic lake
title_sort carbon dynamics modelization and biological community sensitivity to temperature in an oligotrophic freshwater antarctic lake
url http://www.sciencedirect.com/science/article/pii/S0304380015001192
long_lat ENVELOPE(-60.283,-60.283,-63.900,-63.900)
ENVELOPE(-61.066,-61.066,-62.633,-62.633)
geographic Antarctic
Byers
Byers peninsula
geographic_facet Antarctic
Byers
Byers peninsula
genre Antarc*
Antarctic
genre_facet Antarc*
Antarctic
op_relation http://www.sciencedirect.com/science/article/pii/S0304380015001192
_version_ 1796313355136270336