Life cycle assessment of recirculating aquaculture systems: A case of Atlantic salmon farming in China

Recirculating aquaculture systems (RAS) are an alternative technology to tackle the major environmental challenges associated with conventional cage culture systems. In order to systematically assess the environmental performance of RAS farming, it is important to take the whole life cycle into acco...

Full description

Bibliographic Details
Published in:Journal of Industrial Ecology
Main Authors: Xingqiang Song, Ying Liu, Johan Berg Pettersen, Miguel Brandão, Xiaona Ma, Stian Røberg, Björn Frostell
Format: Article in Journal/Newspaper
Language:unknown
Subjects:
Online Access:https://doi.org/10.1111/jiec.12845
id ftrepec:oai:RePEc:bla:inecol:v:23:y:2019:i:5:p:1077-1086
record_format openpolar
spelling ftrepec:oai:RePEc:bla:inecol:v:23:y:2019:i:5:p:1077-1086 2024-04-14T08:09:12+00:00 Life cycle assessment of recirculating aquaculture systems: A case of Atlantic salmon farming in China Xingqiang Song Ying Liu Johan Berg Pettersen Miguel Brandão Xiaona Ma Stian Røberg Björn Frostell https://doi.org/10.1111/jiec.12845 unknown https://doi.org/10.1111/jiec.12845 article ftrepec https://doi.org/10.1111/jiec.12845 2024-03-19T10:31:35Z Recirculating aquaculture systems (RAS) are an alternative technology to tackle the major environmental challenges associated with conventional cage culture systems. In order to systematically assess the environmental performance of RAS farming, it is important to take the whole life cycle into account so as to avoid ad hoc and suboptimal environmental measures. So far, the application of life cycle assessment (LCA) in aquaculture, especially to indoor RAS, is still in progress. This study reports on an LCA of Atlantic salmon harvested at an indoor RAS farm in northern China. Results showed that 1 tonne live‐weight salmon production required 7,509 kWh farm‐level electricity and generated 16.7 tonnes of CO2 equivalent (eq), 106 kg of SO2 eq, 2.4 kg of P eq, and 108 kg of N eq (cradle‐to‐farm gate). In particular, farm‐level electricity use and feed product were identified as primary contributors to eight of nine impact categories assessed (54–95% in total), except the potential marine eutrophication (MEU) impact (dominated by the grow‐out effluents). Among feed ingredients (on a dry‐weight basis), chicken meal (5%) and krill meal (8%) dominated six and three, respectively, of the nine impact categories. Suggested environmental improvement measures for this indoor RAS farm included optimization of stocking density, feeding management, grow‐out effluent treatment, substitution of feed ingredients, and selection of electricity generation sources. In a generic context, this study can contribute to a better understanding of the life cycle environmental impacts of land‐based salmon RAS operations, as well as science‐based communication among stakeholders on more eco‐friendly farmed salmon. Article in Journal/Newspaper Atlantic salmon RePEc (Research Papers in Economics) Journal of Industrial Ecology 23 5 1077 1086
institution Open Polar
collection RePEc (Research Papers in Economics)
op_collection_id ftrepec
language unknown
description Recirculating aquaculture systems (RAS) are an alternative technology to tackle the major environmental challenges associated with conventional cage culture systems. In order to systematically assess the environmental performance of RAS farming, it is important to take the whole life cycle into account so as to avoid ad hoc and suboptimal environmental measures. So far, the application of life cycle assessment (LCA) in aquaculture, especially to indoor RAS, is still in progress. This study reports on an LCA of Atlantic salmon harvested at an indoor RAS farm in northern China. Results showed that 1 tonne live‐weight salmon production required 7,509 kWh farm‐level electricity and generated 16.7 tonnes of CO2 equivalent (eq), 106 kg of SO2 eq, 2.4 kg of P eq, and 108 kg of N eq (cradle‐to‐farm gate). In particular, farm‐level electricity use and feed product were identified as primary contributors to eight of nine impact categories assessed (54–95% in total), except the potential marine eutrophication (MEU) impact (dominated by the grow‐out effluents). Among feed ingredients (on a dry‐weight basis), chicken meal (5%) and krill meal (8%) dominated six and three, respectively, of the nine impact categories. Suggested environmental improvement measures for this indoor RAS farm included optimization of stocking density, feeding management, grow‐out effluent treatment, substitution of feed ingredients, and selection of electricity generation sources. In a generic context, this study can contribute to a better understanding of the life cycle environmental impacts of land‐based salmon RAS operations, as well as science‐based communication among stakeholders on more eco‐friendly farmed salmon.
format Article in Journal/Newspaper
author Xingqiang Song
Ying Liu
Johan Berg Pettersen
Miguel Brandão
Xiaona Ma
Stian Røberg
Björn Frostell
spellingShingle Xingqiang Song
Ying Liu
Johan Berg Pettersen
Miguel Brandão
Xiaona Ma
Stian Røberg
Björn Frostell
Life cycle assessment of recirculating aquaculture systems: A case of Atlantic salmon farming in China
author_facet Xingqiang Song
Ying Liu
Johan Berg Pettersen
Miguel Brandão
Xiaona Ma
Stian Røberg
Björn Frostell
author_sort Xingqiang Song
title Life cycle assessment of recirculating aquaculture systems: A case of Atlantic salmon farming in China
title_short Life cycle assessment of recirculating aquaculture systems: A case of Atlantic salmon farming in China
title_full Life cycle assessment of recirculating aquaculture systems: A case of Atlantic salmon farming in China
title_fullStr Life cycle assessment of recirculating aquaculture systems: A case of Atlantic salmon farming in China
title_full_unstemmed Life cycle assessment of recirculating aquaculture systems: A case of Atlantic salmon farming in China
title_sort life cycle assessment of recirculating aquaculture systems: a case of atlantic salmon farming in china
url https://doi.org/10.1111/jiec.12845
genre Atlantic salmon
genre_facet Atlantic salmon
op_relation https://doi.org/10.1111/jiec.12845
op_doi https://doi.org/10.1111/jiec.12845
container_title Journal of Industrial Ecology
container_volume 23
container_issue 5
container_start_page 1077
op_container_end_page 1086
_version_ 1796306674119606272