Platinum Group Metal Flows of Europe, Part II

A model of the use of the platinum group metals (PGMs) platinum, palladium, and rhodium in Europe has been developed and combined with a model of the environmental pressures related to PGM production. Compared to the base case presented in Part I of this pair of articles, potential changes in PGM pr...

Full description

Bibliographic Details
Published in:Journal of Industrial Ecology
Main Authors: Mathieu Saurat, Stefan Bringezu
Format: Article in Journal/Newspaper
Language:unknown
Subjects:
Online Access:https://doi.org/10.1111/j.1530-9290.2008.00106.x
id ftrepec:oai:RePEc:bla:inecol:v:13:y:2009:i:3:p:406-421
record_format openpolar
spelling ftrepec:oai:RePEc:bla:inecol:v:13:y:2009:i:3:p:406-421 2024-04-14T08:15:15+00:00 Platinum Group Metal Flows of Europe, Part II Mathieu Saurat Stefan Bringezu https://doi.org/10.1111/j.1530-9290.2008.00106.x unknown https://doi.org/10.1111/j.1530-9290.2008.00106.x article ftrepec https://doi.org/10.1111/j.1530-9290.2008.00106.x 2024-03-19T10:28:17Z A model of the use of the platinum group metals (PGMs) platinum, palladium, and rhodium in Europe has been developed and combined with a model of the environmental pressures related to PGM production. Compared to the base case presented in Part I of this pair of articles, potential changes in PGM production and use are quantified with regard to cumulative and yearly environmental impacts and PGM resource use, for the period 2005–2020. Reducing sulfur dioxide (SO2) emissions of PGM producer Norilsk Nickel could cut the cumulative SO2 emissions associated with the use of PGMs in Europe by 35%. Cleaner electricity generation in South Africa could reduce cumulative SO2 emissions by another 9%. Increasing the recycling rate of end‐of‐life catalytic converters to 70% in 2020 could save 15% of the cumulative primary PGM input into car catalysts and 10% of the SO2 emissions associated with PGM production. In 2020, PGM requirements and SO2 emissions would be, respectively, 40% and 22% lower than the base case. Substituting palladium for part of the platinum in diesel catalysts, coupled with a probable palladium price increase, could imply 15% more cumulative SO2 emissions if recycling rates do not increase. A future large‐scale introduction of fuel cell vehicles would require technological improvements to significantly reduce the PGM content of the fuel cell stack. The basic design of such vehicles greatly influences the vehicle power, a key parameter in determining the total PGM requirement. Article in Journal/Newspaper norilsk RePEc (Research Papers in Economics) Norilsk ENVELOPE(88.203,88.203,69.354,69.354) Journal of Industrial Ecology 13 3 406 421
institution Open Polar
collection RePEc (Research Papers in Economics)
op_collection_id ftrepec
language unknown
description A model of the use of the platinum group metals (PGMs) platinum, palladium, and rhodium in Europe has been developed and combined with a model of the environmental pressures related to PGM production. Compared to the base case presented in Part I of this pair of articles, potential changes in PGM production and use are quantified with regard to cumulative and yearly environmental impacts and PGM resource use, for the period 2005–2020. Reducing sulfur dioxide (SO2) emissions of PGM producer Norilsk Nickel could cut the cumulative SO2 emissions associated with the use of PGMs in Europe by 35%. Cleaner electricity generation in South Africa could reduce cumulative SO2 emissions by another 9%. Increasing the recycling rate of end‐of‐life catalytic converters to 70% in 2020 could save 15% of the cumulative primary PGM input into car catalysts and 10% of the SO2 emissions associated with PGM production. In 2020, PGM requirements and SO2 emissions would be, respectively, 40% and 22% lower than the base case. Substituting palladium for part of the platinum in diesel catalysts, coupled with a probable palladium price increase, could imply 15% more cumulative SO2 emissions if recycling rates do not increase. A future large‐scale introduction of fuel cell vehicles would require technological improvements to significantly reduce the PGM content of the fuel cell stack. The basic design of such vehicles greatly influences the vehicle power, a key parameter in determining the total PGM requirement.
format Article in Journal/Newspaper
author Mathieu Saurat
Stefan Bringezu
spellingShingle Mathieu Saurat
Stefan Bringezu
Platinum Group Metal Flows of Europe, Part II
author_facet Mathieu Saurat
Stefan Bringezu
author_sort Mathieu Saurat
title Platinum Group Metal Flows of Europe, Part II
title_short Platinum Group Metal Flows of Europe, Part II
title_full Platinum Group Metal Flows of Europe, Part II
title_fullStr Platinum Group Metal Flows of Europe, Part II
title_full_unstemmed Platinum Group Metal Flows of Europe, Part II
title_sort platinum group metal flows of europe, part ii
url https://doi.org/10.1111/j.1530-9290.2008.00106.x
long_lat ENVELOPE(88.203,88.203,69.354,69.354)
geographic Norilsk
geographic_facet Norilsk
genre norilsk
genre_facet norilsk
op_relation https://doi.org/10.1111/j.1530-9290.2008.00106.x
op_doi https://doi.org/10.1111/j.1530-9290.2008.00106.x
container_title Journal of Industrial Ecology
container_volume 13
container_issue 3
container_start_page 406
op_container_end_page 421
_version_ 1796313544426258432