Cloud cover over Spitsbergen and its relation to atmospheric circulation (1983-2015)

24 cm This paper discusses the cloud cover and its relation to atmospheric circulation over Spitsbergen during 1983-2015. It focuses on monthly and seasonal cloud covers and on the frequency of days with specific cloud cover (cloudless, clear, cloudy and completely overcast sky) and their relation t...

Full description

Bibliographic Details
Published in:Theoretical and Applied Climatology
Main Authors: Łupikasza, Ewa, Lipiński, Oskar
Format: Text
Language:English
Published: IGiPZ PAN 2017
Subjects:
Online Access:https://rcin.org.pl/dlibra/publication/edition/61908/content
id ftrcin:oai:rcin.org.pl:61908
record_format openpolar
institution Open Polar
collection Digital Repository of Scientific Institutes (RCIN)
op_collection_id ftrcin
language English
topic cloud cover
atmospheric circulation
Spitsbergen
Arctic
zachmurzenie
cyrkulacja atmosferyczna
Arktyka
spellingShingle cloud cover
atmospheric circulation
Spitsbergen
Arctic
zachmurzenie
cyrkulacja atmosferyczna
Arktyka
Łupikasza, Ewa
Lipiński, Oskar
Cloud cover over Spitsbergen and its relation to atmospheric circulation (1983-2015)
topic_facet cloud cover
atmospheric circulation
Spitsbergen
Arctic
zachmurzenie
cyrkulacja atmosferyczna
Arktyka
description 24 cm This paper discusses the cloud cover and its relation to atmospheric circulation over Spitsbergen during 1983-2015. It focuses on monthly and seasonal cloud covers and on the frequency of days with specific cloud cover (cloudless, clear, cloudy and completely overcast sky) and their relation to various circulation types. In the research period the cloud cover characteristics were differentiated over the island on both monthly and seasonal scales, and they strongly depended on the direction of air advection. The highest mean daily cloud cover was reported for circulation types with air advection from the south (S+SWc and S+SWa). The greatest variation in the cloud cover distribution was observed during the polar night (at Svalbard Lufthavn and Ny-Ålesund) or in the autumn (Hornsund). The long-term variability in the cloud cover significantly depends on the frequency of N+NEa type (negative correlation) and on S+SWc and W+NWc and Cc+Bc types (positive correlation), particularly in sprin 24 cm This paper discusses the cloud cover and its relation to atmospheric circulation over Spitsbergen during 1983-2015. It focuses on monthly and seasonal cloud covers and on the frequency of days with specific cloud cover (cloudless, clear, cloudy and completely overcast sky) and their relation to various circulation types. In the research period the cloud cover characteristics were differentiated over the island on both monthly and seasonal scales, and they strongly depended on the direction of air advection. The highest mean daily cloud cover was reported for circulation types with air advection from the south (S+SWc and S+SWa). The greatest variation in the cloud cover distribution was observed during the polar night (at Svalbard Lufthavn and Ny-Ålesund) or in the autumn (Hornsund). The long-term variability in the cloud cover significantly depends on the frequency of N+NEa type (negative correlation) and on S+SWc and W+NWc and Cc+Bc types (positive correlation), particularly in sprin
format Text
author Łupikasza, Ewa
Lipiński, Oskar
author_facet Łupikasza, Ewa
Lipiński, Oskar
author_sort Łupikasza, Ewa
title Cloud cover over Spitsbergen and its relation to atmospheric circulation (1983-2015)
title_short Cloud cover over Spitsbergen and its relation to atmospheric circulation (1983-2015)
title_full Cloud cover over Spitsbergen and its relation to atmospheric circulation (1983-2015)
title_fullStr Cloud cover over Spitsbergen and its relation to atmospheric circulation (1983-2015)
title_full_unstemmed Cloud cover over Spitsbergen and its relation to atmospheric circulation (1983-2015)
title_sort cloud cover over spitsbergen and its relation to atmospheric circulation (1983-2015)
publisher IGiPZ PAN
publishDate 2017
url https://rcin.org.pl/dlibra/publication/edition/61908/content
long_lat ENVELOPE(15.865,15.865,76.979,76.979)
geographic Arctic
Hornsund
Ny-Ålesund
Svalbard
geographic_facet Arctic
Hornsund
Ny-Ålesund
Svalbard
genre Arctic
Arctic
Hornsund
Ny Ålesund
Ny-Ålesund
polar night
Svalbard
The Cryosphere
Spitsbergen
genre_facet Arctic
Arctic
Hornsund
Ny Ålesund
Ny-Ålesund
polar night
Svalbard
The Cryosphere
Spitsbergen
op_source CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406
http://195.187.71.2/ipac20/ipac.jsp?profile=geogpan&index=BOCLC&term=ee95400564
CBGiOS. IGiPZ PAN, sygn.: Cz.2085, Cz.2173, Cz.2406
op_relation Geographia Polonica
1. Adamczyk R., Ustrnul Z., 2008. Uwarunkowania cyrkulacyjne zachmurzenia ogólnego w strefie polarnej Europy. Problemy Klimatologii Polarnej, 18, pp. 79-86.
2. Araźny A., 2003. Przebieg roczny wilgotności względnej w Arktyce Norweskiej w okresie 1971-2000, Problemy Klimatologii Polarnej. 13, pp. 107-115.
3. Araźny A., 2008. Bioklimat Arktyki Norweskiej i jego zmienność w okresie 1971-2000. Toruń: Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika.
4. Bednorz E., Kaczmarek D., Dulik P., 2016. Atmospheric conditions governing anomalies of the summer and winter cloudiness in Spitsbergen. Theoretical and Applied Climatology, vol. 123, nos. 1-2, pp. 1-10.
https://doi.org/10.1007/s00704-014-1326-5 -
5. Beesley J.A., Moritz R.E., 1999. Toward an explanation of the annual cycle of cloudiness over the Arctic Ocean. Journal of Climate, vol. 12, no. 2, pp. 395-415.
https://doi.org/10.1175/1520-0442(1999)012<0395:TAEOTA>2.0.CO;2 -
6. Boucher O., Randall D., Artaxo P., Bretherton C., Feingold G., Forster P., Kerminen V.- M., Kondo Y., Liao H., Lohmann U., Rasch P., Satheeshs K., Sherwood S., Stevens B., Zhangx Y., 2013. Clouds and Aerosols [in:] T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom – New York, NY, USA: Cambridge University Press.
7. Brümmer, B., S. THIEMANN S., KIRCHGÄSSNER A., 2000. A cyclone statistics for the Arctic based on European Centre re-analysis data. Meteorology and Atmospheric Physics, vol. 75, nos. 3-4, pp. 233-250.
https://doi.org/10.1007/s007030070006 -
8. Curry J.A., Rossow W.B., Randall D., Schramm J.L., 1996. Overview of Arctic cloud and radiation characteristics. Journal of Climate, vol. 9, no. 8., pp. 1731-1764.
https://doi.org/10.1175/1520-0442(1996)009<1731:OOACAR>2.0.CO;2 -
9. Eastman R., Warren S.G., 2010. Interannual variations of arctic cloud types in relation to sea ice. Journal of Climate, vol. 23, no. 15, pp. 4216-4232.
https://doi.org/10.1175/2010JCLI3492.1 -
10. IMGW, 2000-2001. Roczniki Meteorologiczne Hornsund. (Edited by M. Miętus), 1982/83-1999/2000, Gdynia: Instytut Meteorologii i Gospodarki Wodnej Oddział Morski.
11. IPCC, 2007. Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
12. KAY J.E., GETTELMAN A., 2009. Cloud influence on and response to seasonal Arctic sea ice loss. Journal of Geophysical Research, vol. 114, no. D18204, DOI:10.1029/2009JD011773.
https://doi.org/10.1029/2009JD011773 -
13. Kotarba A., Widawski A., 2008. Satelitarna charakterystyka zachmurzenia ogólnego nad Svalbardem w roku 2007 w powiązaniu z cyrkulacją atmosfery. Problemy Klimatologii Polarnej, 18, pp. 127-140.
14. Kryza M., Szymanowski M., Migała K., 2011. Zastosowanie modelu r. sun do określenia dobowych sum promieniowania rzeczywistego na lodowcu Werenskjolda (SW Spitsbergen). Prace i Studia Geograficzne, 47, pp. 435-442.
15. Lipiński O., Łupikasza E., 2016. Rola cyrkulacji atmosfery w kształtowaniu wielkości zachmurzenia ogólnego na Spitsbergenie (1983-2013). Przegląd Geograficzny, vol. 88, no. 3, pp. 295-315.
https://doi.org/10.7163/PrzG.2016.3.2 -
16. LIU Y., KEY J.R., FRANCIS J.A., WANG X., 2007. Possible causes of decreasing cloud cover in the Arctic winter, 1982–2000. Journal of Geophysical Research, vol. 34, no. 14, L14705, DOI:10.1029/2007GL030042.
https://doi.org/10.1029/2007GL030042 -
17. Marsz A.A., 2013. Cloudiness and sunshine duration [in:] Marsz A.A., Styszyńska A., (ed.), Climate and climate change in Hornsund, Svalbard, Gdynia: Gdynia Maritime University, pp. 101-125.
18. Marsz A.A., Niedźwiedź T., Styszyńska A., 2013. Współczesne zmiany klimatu Spitsbergenu jako podstawa wyznaczania zmian krajobrazowych [in:] Dawne i współczesne geoekosystemy Spitsbergenu, Zb. Zwoliński, A. Kostrzewski, M. Pulina (ed.), Poznań: Bogucki Wydawnictwo Naukowe, pp. 391-413.
19. Marsz A.A., Styszyńska A., 2013. Climate and climate change at Hornsund, Svalbard. Gdynia: Gdynia Maritime University.
20. Matuszko D., Soroka J., 2013. Zachmurzenie Spitsbergenu na podstawie obserwacji w polskiej polarnej w Hornsundzie. Kraków: Instytut Geografii i Gospodarki Przestrzennej. Uniwersytet Jagielloński.
21. MEIER W.N., GERLAND S., GRANSKOG M.A., KEY J.R., HAAS C., HOVELSRUD G.K., KOVACS K., MAKSHTAS A., MICHEL C., PEROVICH D., REIST J.D., VAN OORT B.E.H., 2011. Chapter 9: Sea ice [in:] Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate Change and the Cryosphere, Oslo: Arctic Monitoring and Assessment Programme (AMAP).
22. Niedźwiedź T., 2003. Słownik meteorologiczny. Warszawa: Polskie Towarzystwo Geofizyczne, Instytut Meteorologii i Gospodarki Wodnej.
23. NIEDŹWIEDŹ T., 2006. Główne cechy cyrkulacji atmosfery nad Spitsbergenem (XII.1950 – IX.2006). Problemy Klimatologii Polarnej, no. 16, pp. 91-105.
24. NIEDŹWIEDŹ T., 2013, Kalendarz typów cyrkulacji dla Spitsbergenu, zbiór komputerowy dostępny w Katedrze Klimatologii. Sosnowiec: Wydział Nauk o Ziemi Uniwersytetu Śląskiego.
25. Niedźwiedź T., 2013. The atmospheric circulation [in:] A.A. Marsz, A. Styszyńska, (ed.), Climate and climate change in Hornsund, Svalbard, Gdynia: Gdynia Maritime University, pp. 57-74.
26. Niedźwiedź T., Łupikasza E., 2015. Dynamika wskaźników cyrkulacji nad Spitsbergenem. Problemy Klimatologii Polarnej, 25, pp. 153-167.
27. Niedźwiedź T., Ustrnul Z., 1989. Wpływ cyrkulacji atmosferycznej na kształtowanie się zachmurzenia w Hornsundzie [in:] A. Olszewski, Dorobek i perspektywy Polskich Badań Polarnych: XVI Sympozjum Polarne, Toruń: Uniwersytet Mikołaja Kopernika, pp. 158-160.
28. PALM S.P., MARSHAK A., YANG Y., SPINHIRNE J., MARKUS T., 2010. The influence of Arctic sea ice extent on polar cloud fraction and vertical structure and implications for regional climate. Journal of Geophysical Research, vol. 115, no. D21, DOI:10.1029/2010JD013900.
https://doi.org/10.1029/2010JD013900 -
29. Polyakov I.V., Walsh J.E., Kwok R., 2012. Recent changes of Arctic multiyear sea ice coverage and the likely causes. Bulletin of the American Meteorological Society, vol. 93, no. 2, pp. 145-151.
https://doi.org/10.1175/BAMS-D-11-00070.1 -
30. Przybylak R., 2003. The climate of the Arctic. Atmospheric and Oceanographic Science Library, vol.26, Dordrecht: Kluwer Academic Publishers.
31. Przybylak R., 2007. Współczesne zmiany klimatu w Arktyce [in:] A. Styczyńska, A.A. Marsz (ed.), Zmiany klimatyczne w Arktyce i Antarktyce w ostatnim pięćdziesięcioleciu XX wieku i ich implikacje środowiskowe, Gdynia: Wydawnictwo Uczelniane Akademii Morskiej, pp. 93-110.
32. Raatz W.E., 1981. Trends in cloudiness in the Arctic since 1920. Atmospheric Environment, vol. 15, no. 8, pp. 1503-1506.
https://doi.org/10.1016/0004-6981(81)90358-9 -
33. SCHWEIGER A., 2004. Changes in seasonal cloud cover over the Arctic seas from satellite and surface observations. Geophysical Research Letters, vol. 31, no. 12, L12207, DOI:10.1029/2004GL020067.
https://doi.org/10.1029/2004GL020067 -
34. Schweiger A., Key J.R., 1992. Arctic cloudiness: comparison of ISCCPC2 and NIMBUS-7 satellite-derived cloud products with a surface based climatology. Journal of Climate, vol. 5, no. 12, pp. 1514-1527.
https://doi.org/10.1175/1520-0442(1992)005<1514:ACCOIC>2.0.CO;2 -
35. Soroka J., Matuszko D., 2013. Trudności w wizualnej ocenie zachmurzenia w Hornsundzie. Problemy Klimatologii Polarnej, 23, pp. 147-156.
36. Stroeve J.C., Serreze M.C., Holland M.M., Kay J.E., Malanik J., Barrett A.P., 2012. The Arctic's rapidly shrinking sea ice cover: A research synthesis. Climatic Change, vol. 110, nos. 3-4, pp. 1005-1027.
op_rights Creative Commons Attribution BY-SA 3.0 PL license
Licencja Creative Commons Uznanie autorstwa-Na tych samych warunkach 3.0 Polska
op_rightsnorm CC-BY
CC-BY-SA
op_doi https://doi.org/10.1007/s00704-014-1326-5
https://doi.org/10.1175/1520-0442(1999)012<0395:TAEOTA>2.0.CO;2
https://doi.org/10.1007/s007030070006
https://doi.org/10.1175/1520-0442(1996)009<1731:OOACAR>2.0.CO;2
https://doi.org/10.1175/2010JCLI3492.1
container_title Theoretical and Applied Climatology
container_volume 123
container_issue 1-2
container_start_page 1
op_container_end_page 10
_version_ 1766301262863663104
spelling ftrcin:oai:rcin.org.pl:61908 2023-05-15T14:27:30+02:00 Cloud cover over Spitsbergen and its relation to atmospheric circulation (1983-2015) Geographia Polonica Vol. 90 No. 1 (2017) Łupikasza, Ewa Lipiński, Oskar 2017 File size 1,4 MB application/pdf Rozmiar pliku 1,4 MB https://rcin.org.pl/dlibra/publication/edition/61908/content eng eng IGiPZ PAN Geographia Polonica 1. Adamczyk R., Ustrnul Z., 2008. Uwarunkowania cyrkulacyjne zachmurzenia ogólnego w strefie polarnej Europy. Problemy Klimatologii Polarnej, 18, pp. 79-86. 2. Araźny A., 2003. Przebieg roczny wilgotności względnej w Arktyce Norweskiej w okresie 1971-2000, Problemy Klimatologii Polarnej. 13, pp. 107-115. 3. Araźny A., 2008. Bioklimat Arktyki Norweskiej i jego zmienność w okresie 1971-2000. Toruń: Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika. 4. Bednorz E., Kaczmarek D., Dulik P., 2016. Atmospheric conditions governing anomalies of the summer and winter cloudiness in Spitsbergen. Theoretical and Applied Climatology, vol. 123, nos. 1-2, pp. 1-10. https://doi.org/10.1007/s00704-014-1326-5 - 5. Beesley J.A., Moritz R.E., 1999. Toward an explanation of the annual cycle of cloudiness over the Arctic Ocean. Journal of Climate, vol. 12, no. 2, pp. 395-415. https://doi.org/10.1175/1520-0442(1999)012<0395:TAEOTA>2.0.CO;2 - 6. Boucher O., Randall D., Artaxo P., Bretherton C., Feingold G., Forster P., Kerminen V.- M., Kondo Y., Liao H., Lohmann U., Rasch P., Satheeshs K., Sherwood S., Stevens B., Zhangx Y., 2013. Clouds and Aerosols [in:] T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom – New York, NY, USA: Cambridge University Press. 7. Brümmer, B., S. THIEMANN S., KIRCHGÄSSNER A., 2000. A cyclone statistics for the Arctic based on European Centre re-analysis data. Meteorology and Atmospheric Physics, vol. 75, nos. 3-4, pp. 233-250. https://doi.org/10.1007/s007030070006 - 8. Curry J.A., Rossow W.B., Randall D., Schramm J.L., 1996. Overview of Arctic cloud and radiation characteristics. Journal of Climate, vol. 9, no. 8., pp. 1731-1764. https://doi.org/10.1175/1520-0442(1996)009<1731:OOACAR>2.0.CO;2 - 9. Eastman R., Warren S.G., 2010. Interannual variations of arctic cloud types in relation to sea ice. Journal of Climate, vol. 23, no. 15, pp. 4216-4232. https://doi.org/10.1175/2010JCLI3492.1 - 10. IMGW, 2000-2001. Roczniki Meteorologiczne Hornsund. (Edited by M. Miętus), 1982/83-1999/2000, Gdynia: Instytut Meteorologii i Gospodarki Wodnej Oddział Morski. 11. IPCC, 2007. Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. 12. KAY J.E., GETTELMAN A., 2009. Cloud influence on and response to seasonal Arctic sea ice loss. Journal of Geophysical Research, vol. 114, no. D18204, DOI:10.1029/2009JD011773. https://doi.org/10.1029/2009JD011773 - 13. Kotarba A., Widawski A., 2008. Satelitarna charakterystyka zachmurzenia ogólnego nad Svalbardem w roku 2007 w powiązaniu z cyrkulacją atmosfery. Problemy Klimatologii Polarnej, 18, pp. 127-140. 14. Kryza M., Szymanowski M., Migała K., 2011. Zastosowanie modelu r. sun do określenia dobowych sum promieniowania rzeczywistego na lodowcu Werenskjolda (SW Spitsbergen). Prace i Studia Geograficzne, 47, pp. 435-442. 15. Lipiński O., Łupikasza E., 2016. Rola cyrkulacji atmosfery w kształtowaniu wielkości zachmurzenia ogólnego na Spitsbergenie (1983-2013). Przegląd Geograficzny, vol. 88, no. 3, pp. 295-315. https://doi.org/10.7163/PrzG.2016.3.2 - 16. LIU Y., KEY J.R., FRANCIS J.A., WANG X., 2007. Possible causes of decreasing cloud cover in the Arctic winter, 1982–2000. Journal of Geophysical Research, vol. 34, no. 14, L14705, DOI:10.1029/2007GL030042. https://doi.org/10.1029/2007GL030042 - 17. Marsz A.A., 2013. Cloudiness and sunshine duration [in:] Marsz A.A., Styszyńska A., (ed.), Climate and climate change in Hornsund, Svalbard, Gdynia: Gdynia Maritime University, pp. 101-125. 18. Marsz A.A., Niedźwiedź T., Styszyńska A., 2013. Współczesne zmiany klimatu Spitsbergenu jako podstawa wyznaczania zmian krajobrazowych [in:] Dawne i współczesne geoekosystemy Spitsbergenu, Zb. Zwoliński, A. Kostrzewski, M. Pulina (ed.), Poznań: Bogucki Wydawnictwo Naukowe, pp. 391-413. 19. Marsz A.A., Styszyńska A., 2013. Climate and climate change at Hornsund, Svalbard. Gdynia: Gdynia Maritime University. 20. Matuszko D., Soroka J., 2013. Zachmurzenie Spitsbergenu na podstawie obserwacji w polskiej polarnej w Hornsundzie. Kraków: Instytut Geografii i Gospodarki Przestrzennej. Uniwersytet Jagielloński. 21. MEIER W.N., GERLAND S., GRANSKOG M.A., KEY J.R., HAAS C., HOVELSRUD G.K., KOVACS K., MAKSHTAS A., MICHEL C., PEROVICH D., REIST J.D., VAN OORT B.E.H., 2011. Chapter 9: Sea ice [in:] Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate Change and the Cryosphere, Oslo: Arctic Monitoring and Assessment Programme (AMAP). 22. Niedźwiedź T., 2003. Słownik meteorologiczny. Warszawa: Polskie Towarzystwo Geofizyczne, Instytut Meteorologii i Gospodarki Wodnej. 23. NIEDŹWIEDŹ T., 2006. Główne cechy cyrkulacji atmosfery nad Spitsbergenem (XII.1950 – IX.2006). Problemy Klimatologii Polarnej, no. 16, pp. 91-105. 24. NIEDŹWIEDŹ T., 2013, Kalendarz typów cyrkulacji dla Spitsbergenu, zbiór komputerowy dostępny w Katedrze Klimatologii. Sosnowiec: Wydział Nauk o Ziemi Uniwersytetu Śląskiego. 25. Niedźwiedź T., 2013. The atmospheric circulation [in:] A.A. Marsz, A. Styszyńska, (ed.), Climate and climate change in Hornsund, Svalbard, Gdynia: Gdynia Maritime University, pp. 57-74. 26. Niedźwiedź T., Łupikasza E., 2015. Dynamika wskaźników cyrkulacji nad Spitsbergenem. Problemy Klimatologii Polarnej, 25, pp. 153-167. 27. Niedźwiedź T., Ustrnul Z., 1989. Wpływ cyrkulacji atmosferycznej na kształtowanie się zachmurzenia w Hornsundzie [in:] A. Olszewski, Dorobek i perspektywy Polskich Badań Polarnych: XVI Sympozjum Polarne, Toruń: Uniwersytet Mikołaja Kopernika, pp. 158-160. 28. PALM S.P., MARSHAK A., YANG Y., SPINHIRNE J., MARKUS T., 2010. The influence of Arctic sea ice extent on polar cloud fraction and vertical structure and implications for regional climate. Journal of Geophysical Research, vol. 115, no. D21, DOI:10.1029/2010JD013900. https://doi.org/10.1029/2010JD013900 - 29. Polyakov I.V., Walsh J.E., Kwok R., 2012. Recent changes of Arctic multiyear sea ice coverage and the likely causes. Bulletin of the American Meteorological Society, vol. 93, no. 2, pp. 145-151. https://doi.org/10.1175/BAMS-D-11-00070.1 - 30. Przybylak R., 2003. The climate of the Arctic. Atmospheric and Oceanographic Science Library, vol.26, Dordrecht: Kluwer Academic Publishers. 31. Przybylak R., 2007. Współczesne zmiany klimatu w Arktyce [in:] A. Styczyńska, A.A. Marsz (ed.), Zmiany klimatyczne w Arktyce i Antarktyce w ostatnim pięćdziesięcioleciu XX wieku i ich implikacje środowiskowe, Gdynia: Wydawnictwo Uczelniane Akademii Morskiej, pp. 93-110. 32. Raatz W.E., 1981. Trends in cloudiness in the Arctic since 1920. Atmospheric Environment, vol. 15, no. 8, pp. 1503-1506. https://doi.org/10.1016/0004-6981(81)90358-9 - 33. SCHWEIGER A., 2004. Changes in seasonal cloud cover over the Arctic seas from satellite and surface observations. Geophysical Research Letters, vol. 31, no. 12, L12207, DOI:10.1029/2004GL020067. https://doi.org/10.1029/2004GL020067 - 34. Schweiger A., Key J.R., 1992. Arctic cloudiness: comparison of ISCCPC2 and NIMBUS-7 satellite-derived cloud products with a surface based climatology. Journal of Climate, vol. 5, no. 12, pp. 1514-1527. https://doi.org/10.1175/1520-0442(1992)005<1514:ACCOIC>2.0.CO;2 - 35. Soroka J., Matuszko D., 2013. Trudności w wizualnej ocenie zachmurzenia w Hornsundzie. Problemy Klimatologii Polarnej, 23, pp. 147-156. 36. Stroeve J.C., Serreze M.C., Holland M.M., Kay J.E., Malanik J., Barrett A.P., 2012. The Arctic's rapidly shrinking sea ice cover: A research synthesis. Climatic Change, vol. 110, nos. 3-4, pp. 1005-1027. Creative Commons Attribution BY-SA 3.0 PL license Licencja Creative Commons Uznanie autorstwa-Na tych samych warunkach 3.0 Polska CC-BY CC-BY-SA CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 http://195.187.71.2/ipac20/ipac.jsp?profile=geogpan&index=BOCLC&term=ee95400564 CBGiOS. IGiPZ PAN, sygn.: Cz.2085, Cz.2173, Cz.2406 cloud cover atmospheric circulation Spitsbergen Arctic zachmurzenie cyrkulacja atmosferyczna Arktyka Text Tekst 2017 ftrcin https://doi.org/10.1007/s00704-014-1326-5 https://doi.org/10.1175/1520-0442(1999)012<0395:TAEOTA>2.0.CO;2 https://doi.org/10.1007/s007030070006 https://doi.org/10.1175/1520-0442(1996)009<1731:OOACAR>2.0.CO;2 https://doi.org/10.1175/2010JCLI3492.1 2022-11-28T01:30:08Z 24 cm This paper discusses the cloud cover and its relation to atmospheric circulation over Spitsbergen during 1983-2015. It focuses on monthly and seasonal cloud covers and on the frequency of days with specific cloud cover (cloudless, clear, cloudy and completely overcast sky) and their relation to various circulation types. In the research period the cloud cover characteristics were differentiated over the island on both monthly and seasonal scales, and they strongly depended on the direction of air advection. The highest mean daily cloud cover was reported for circulation types with air advection from the south (S+SWc and S+SWa). The greatest variation in the cloud cover distribution was observed during the polar night (at Svalbard Lufthavn and Ny-Ålesund) or in the autumn (Hornsund). The long-term variability in the cloud cover significantly depends on the frequency of N+NEa type (negative correlation) and on S+SWc and W+NWc and Cc+Bc types (positive correlation), particularly in sprin 24 cm This paper discusses the cloud cover and its relation to atmospheric circulation over Spitsbergen during 1983-2015. It focuses on monthly and seasonal cloud covers and on the frequency of days with specific cloud cover (cloudless, clear, cloudy and completely overcast sky) and their relation to various circulation types. In the research period the cloud cover characteristics were differentiated over the island on both monthly and seasonal scales, and they strongly depended on the direction of air advection. The highest mean daily cloud cover was reported for circulation types with air advection from the south (S+SWc and S+SWa). The greatest variation in the cloud cover distribution was observed during the polar night (at Svalbard Lufthavn and Ny-Ålesund) or in the autumn (Hornsund). The long-term variability in the cloud cover significantly depends on the frequency of N+NEa type (negative correlation) and on S+SWc and W+NWc and Cc+Bc types (positive correlation), particularly in sprin Text Arctic Arctic Hornsund Ny Ålesund Ny-Ålesund polar night Svalbard The Cryosphere Spitsbergen Digital Repository of Scientific Institutes (RCIN) Arctic Hornsund ENVELOPE(15.865,15.865,76.979,76.979) Ny-Ålesund Svalbard Theoretical and Applied Climatology 123 1-2 1 10