Geographical characteristics of the timberline in the Carpathians

24 cm The pattern of timberline distribution on mountain ranges world-wide is related to global factors. The basic factor is temperature and the amount of radiation, which falls with increasing distance from the equator. Additionally, this basic relationship is overlaid by the specific features of t...

Full description

Bibliographic Details
Main Authors: Czajka, Barbara, Łajczak, Adam, Kaczka, Ryszard J.
Format: Text
Language:English
Published: IGiPZ PAN 2015
Subjects:
Online Access:https://rcin.org.pl/dlibra/publication/edition/54607/content
id ftrcin:oai:rcin.org.pl:54607
record_format openpolar
institution Open Polar
collection Digital Repository of Scientific Institutes (RCIN)
op_collection_id ftrcin
language English
topic timberline
global factors
latitude influence
mass-elevation effect
Carpathians
górna granica lasu
czynniki globalne
wpływ szerokości geograficznej
Karpaty
spellingShingle timberline
global factors
latitude influence
mass-elevation effect
Carpathians
górna granica lasu
czynniki globalne
wpływ szerokości geograficznej
Karpaty
Czajka, Barbara
Łajczak, Adam
Kaczka, Ryszard J.
Geographical characteristics of the timberline in the Carpathians
topic_facet timberline
global factors
latitude influence
mass-elevation effect
Carpathians
górna granica lasu
czynniki globalne
wpływ szerokości geograficznej
Karpaty
description 24 cm The pattern of timberline distribution on mountain ranges world-wide is related to global factors. The basic factor is temperature and the amount of radiation, which falls with increasing distance from the equator. Additionally, this basic relationship is overlaid by the specific features of the type of climate on the massif (degree of continentality or oceanity) and the mass-elevation effect. In the Carpathians, the mass elevation effectseems to have bigger impact on the location of timberline (R2 = 0.71, p = 0.00) than their latitudinal location (R2 = 0.56, p = 0.00). The timberline altitude changes by 70 m a.s.l. (±20 m) with each degree of latitude. The influenceof the type of the climate is complex and it is not clearly visible due to past and recent human impact. 24 cm The pattern of timberline distribution on mountain ranges world-wide is related to global factors. The basic factor is temperature and the amount of radiation, which falls with increasing distance from the equator. Additionally, this basic relationship is overlaid by the specific features of the type of climate on the massif (degree of continentality or oceanity) and the mass-elevation effect. In the Carpathians, the mass elevation effectseems to have bigger impact on the location of timberline (R2 = 0.71, p = 0.00) than their latitudinal location (R2 = 0.56, p = 0.00). The timberline altitude changes by 70 m a.s.l. (±20 m) with each degree of latitude. The influenceof the type of the climate is complex and it is not clearly visible due to past and recent human impact.
format Text
author Czajka, Barbara
Łajczak, Adam
Kaczka, Ryszard J.
author_facet Czajka, Barbara
Łajczak, Adam
Kaczka, Ryszard J.
author_sort Czajka, Barbara
title Geographical characteristics of the timberline in the Carpathians
title_short Geographical characteristics of the timberline in the Carpathians
title_full Geographical characteristics of the timberline in the Carpathians
title_fullStr Geographical characteristics of the timberline in the Carpathians
title_full_unstemmed Geographical characteristics of the timberline in the Carpathians
title_sort geographical characteristics of the timberline in the carpathians
publisher IGiPZ PAN
publishDate 2015
url https://rcin.org.pl/dlibra/publication/edition/54607/content
genre Antarctic and Alpine Research
Arctic
genre_facet Antarctic and Alpine Research
Arctic
op_source CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406
http://195.187.71.2/ipac20/ipac.jsp?profile=geogpan&index=BOCLC&term=ee95400564
CBGiOS. IGiPZ PAN, sygn.: Cz.2085, Cz.2173, Cz.2406
op_relation Geographia Polonica
1. ARNO S.F., 1966. Interpreting the timberline: An aid to help park naturalists to acquaint with the subalpine-alpine ecotone of Western North America. Missoula, MT: University of Montana [MA thesis].
2. Arno S., 1984. Timberline: Mountain and Arctic Forest Frontiers. Seattle: The Mountaineers.
3. Balon J., German K., Kozak J., Malara H., WIDACKI W., ZIAJA W., 1995. Regiony fizycznogeograficzne [in:] J. Warszyńska (ed.), Karpaty Polskie: Przyroda, człowiek i jego działalność, Kraków: Uniwersytet Jagielloński, pp. 117-130.
4. BARRY R.G., 1994. Past and potential future changesin mountain environments: A review [in:] M. Beniston(ed.), Mountain environments in changing climates. London-New York: Routledge Publishing Company, pp. 3-33
http://dx.doi.org/10.4324/9780203424957_chapter_1 -
5. BOGAERT R.V., HANECA K., HOOGESTEGER J., JONASSON Ch., DAPPER De M., CALLAGHAN V., 2011. A century of tree line changes in sub-Arctic Sweden shows local and regional variability and only a minor influence of 20th century climate warming. Journal of Biogeography, vol. 38, no. 5, pp. 907-921.
6. BROCKMANN-JEROSCH H., 1919. Baumgrenze und Klimacharakter. Beiträge zur geobotanischen Landesaufnahme, 6, Zürich: Rascher.
7. Caccianiga M., Andreis C., Armiraglio S., LEONELLI G., PELFINI M., SALA D., 2008. Climate continentality and treeline species distribution in the Alps. Plant Biosystems, vol. 142, no. 1, pp. 66-78.
8. CASE B.S., DUNCAN R.P., 2014. A novel framework for disentangling the scale-dependent influences of abiotic factors on alpine treeline position. Ecography, vol. 37, no. 9, pp. 838-851.
http://dx.doi.org/10.1111/ecog.00280 -
9. Cogbill C.V., White P.S., 1991. The latitude-elevation relationship for spruce-fir forest and treeline along the Appalachian mountain chain. Vegetatio, vol. 94, no. 2, pp. 153-175.
http://dx.doi.org/10.1007/BF00032629 -
10. CZAJKA B., KACZKA R.J., ŁAJCZAK A., 2015a. The dynamics of the timberline ecotone on the asymmetric ridge of the Babia Góra Massif, Western Carpathians. Geographia Polonica, vol. 88, no. 2, pp. 85-102.
11. Czajka B., Kaczka R.J., Łajczak A., 2015b. Timberline in the Carpathians: An overview. Geographia Polonica, vol. 88, no. 2, pp. 7-34.
12. Dalen L., Hofgaard A., 2005. Differential regional tree line dynamics in the Scandes Mountains. Arctic, Antarctic and Alpine Research, vol. 37, no. 3, pp. 284-296.
http://dx.doi.org/10.1657/1523-0430(2005)037[0284:DRTDIT]2.0.CO;2 -
13. DÄNIKER A., 1923. Biologische Studien uber Baumund Waldgrenze, insbesondere uber die klimatischen Ursachen und deren Zusammenhange. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 68, Zürich: Naturforschende Gesellschaft.
14. DAUBENMIRE R., 1954. Alpine timberlines in the Americas and their interpretation. Butler University Botanical Studies, vol. 11, art. 14, pp. 119-136.
15. De Quervain A., 1904. Die Hebung der atmosphä-rischen Isothermen in den Schweizer Alpen und ihre Beziehung zu den Höhengrenzen. Gerlands Beiträge zur Geophysik, 6, pp. 481-533.
16. Dolecki L., 1984. Karły świerkowe na połoninach Bieszczadów Zachodnich. Chrońmy Przyrodę Ojczystą, 3, pp.13-20.
17. Fang H., Baiping Z., Yonghui Y., Yunhai Z., Yu P., 2011. Mass elevation effect and its contribution to the altitude of snowline in the Tibetan Plateau and surrounding areas. Arctic, Antarctic, and Alpine Research, vol. 43, no. 2, pp. 207-212.
http://dx.doi.org/10.1657/1938-4246-43.2.207 -
18. Fang H., Yonghui Y., Shibao D., Chun W., RANHAO S., JUAN X., BAIPING Z., 2012. Mass elevation effect and its forcing on timberline altitude. Journal of Geographical Sciences, vol. 22, no. 4, pp. 609-616.
19. FEKETE L., BLATTNY T., 1913-1914. Die Verbreitung der forstlich wichtigsten Bäume und Sträucher im Ungarischen Staate. 1 Bd., Selmecbanya.
20. FLIRI F., 1975. Das Klima der Alpen im Raum von Tirol: Monographien zur Landeskunde Tirols. Folge 1 Innsbruck-Munich: Universtitätsverlag Wagner,
21. Furlan D., 1977. The climate of Southeast Europe [in:] C.C. Wallen (ed.), Climates of central and southern Europe. Amsterdam-Oxford-New York: Elsevier, pp. 185-235.
22. GARBARINO M., LINGUA E., WEISBERG P.J., BOTTERO A., MELONI F., MOTTA R., 2013. Land-use history and topographic gradients as driving factors of subalpine Larix decidua forests. Landscape ecology, vol. 28, no. 5, pp. 805-817.
23. Gellrich M., Baur P., Koch B., Zimmermann N.E., 2007. Agricultural land abandonment and natural forest re-growth in the Swiss mountains: A spatially explicit economic analysis. Agricultural Ecosystems Environments, vol. 118, no. 1-4, pp. 93-108.
http://dx.doi.org/10.1016/j.agee.2006.05.001 -
24. GERARD F., BUGÁR G., GREGOR M., HALADA L., HAZEU G., HUITI H., KÖHLER R., KOLÁR J., LUQUE S., MALCHER C., OLSCHOFSKY K., PETIT S., PINO J., SMITH G., THOMSON A., WACHOWICZ M., BEZÁK P., BOLTIZIAR M., DEBADTS E., HALABUK A., MANCHESTER S., MOJSES M., PETROVIC F., RODA F., ROSCHER M., TUOMINEN S., ZIESE H., 2006. Linking pan-European land cover change to pressures on biodiversity – Biopress final report 1st January 2003 - 31st December 2005, sections 5 and 6. NERC/Centre for Ecology & Hydrology, http://nora.nerc.ac.uk/500891/1/060228finalr eport.pdf [5 March 2015].
25. Golubec M. A., 1978. El'niki Ukrainskih Karpat. Kiev: Naukova Dumka.
26. Grace J., 1989. Tree lines. Philosophical Transactions of the Royal Society, Series B, 324, pp. 233-245
http://dx.doi.org/10.1098/rstb.1989.0046 -
27. GRIFFITHS P., KUEMMERLE T., BAUMANN M., RADELOFF V.C., ABRUDAN I.V., LIESKOVSKY J., MUNTEANU C., OSTAPOWICZ K., HOSTERT P., 2014. Forest disturbances, forest recovery, and changes in forest types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image composites. Remote Sensing of Environment, 151, pp. 72-88.
http://dx.doi.org/10.1016/j.rse.2013.04.022 -
28. GUZIK M., 2008. Analiza wpływu czynników naturalnych i antropogenicznych na kształtowanie się zasięgu lasu i kosodrzewiny w Tatrach. Kraków: Uniwersytet Rolniczy im. Hugona Kołłątaja. Wydział Leśny. Katedra Botaniki Leśnej i Ochrony Przyrody [PhD thesis].
29. Hermes K., 1955. Die Lage der oberen Waldgrenze in den Gebirgen der Erde und ihr Abstand zur Schneegrenze (Kolner geographische Arbeiten) . Kö ln: Selbstverlag des Geographischen Instituts der Universität.
30. Hess M., 1965. Piętra klimatyczne w polskich Karpatach Zachodnich. Zeszyty Naukowe UJ. Prace Geograficzne, 11, Kraków: Uniwersytet Jagielloński.
31. Holtmeier F.K., 1974. Geooekologische Beobachtungen und Studien an der subarktischen und alpinen Waldgrenze in vergleichender Sicht. Wiesbaden: Franz Steiner.
32. Holtmeier F-H., Broll G., 2005. Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Global Ecology and Biogeography, vol. 14, no. 5, pp. 395-410
http://dx.doi.org/10.1111/j.1466-822X.2005.00168.x -38. Jakób M.L., 1937. Uwagi nad górną granicą lasu w Gorganach Centralnych. Sylwan, 2-3, pp. 89-101.
33. Holtmeier F.H., 2009. Mountain timberlines: Ecology, patchiness, and dynamics. Advances in Global Change Research, 36, Dordrecht: Springer.
http://dx.doi.org/10.1007/978-1-4020-9705-8 -
34. HROMADKA J., 1956. Nové orografické třídění ČSR. Sborník Československé společnosti zeměpisné, 61, 161-180.
35. Huzui A.E., Calin I., Patru-Stupariu I., 2012. Spatial pattern analyses of landscape using multitemporal data sources [in:] I. Pătru-Stupariu, M. Pătroescu, C.I. Iojă, L. Rozylowicz (eds.), Procedia Environmental Sciences: 2011 International Conference of Environment-Landscape-European Identity: Volume 14, pp. 98-110.
36. Imhof E., 1900. Die Waldgrenze in der Schweiz. Gerland's Beitrage zur Geophysik, vol. 4, no. 3, Leipzig: Engelmann, pp. 241-330.
37. IRLAND L.C., KREMENETSKA E., 2009. Practical economics of forest ecosystem management: The case of the Ukrainian Carpathians [in:] S.W.S. Keeton (ed.), Ecological economics and sustainable forest management: Developing a transdisciplinary approach for the Carpathian Mountains, Lvov: Ukrainian National Forestry University Press, pp. 180-200.
38. Jakób M.L., 1937. Uwagi nad górną granicą lasu w Gorganach Centralnych. Sylwan, 2-3, pp. 89-101.
39. Jennes J., 2006. opographic Position Index (tpi_jen. avx) extension for ArcView 3. x, v. 1.3 a. Jenness Enterprises, http://www.jennessent.com/arcview/tpi.htm [5 March 2015].
op_rights Creative Commons Attribution BY-ND 3.0 PL license
Licencja Creative Commons Uznanie autorstwa-Bez utworów zależnych 3.0 Polska
op_rightsnorm CC-BY
CC-BY-ND
op_doi https://doi.org/10.4324/9780203424957_chapter_1
https://doi.org/10.1111/ecog.00280
https://doi.org/10.1007/BF00032629
https://doi.org/10.1657/1523-0430(2005)037[0284:DRTDIT]2.0.CO;2
https://doi.org/10.1657/1938-4246-43.2.207
https://doi.org/10.1
container_start_page 3
op_container_end_page 33
op_publisher_place Abingdon, UK
_version_ 1766287029672345600
spelling ftrcin:oai:rcin.org.pl:54607 2023-05-15T14:14:42+02:00 Geographical characteristics of the timberline in the Carpathians Geographia Polonica Vol. 88 No. 2 (2015) Czajka, Barbara Łajczak, Adam Kaczka, Ryszard J. 2015 File size 2,3 MB application/pdf Rozmiar pliku 2,3 MB https://rcin.org.pl/dlibra/publication/edition/54607/content eng eng IGiPZ PAN Geographia Polonica 1. ARNO S.F., 1966. Interpreting the timberline: An aid to help park naturalists to acquaint with the subalpine-alpine ecotone of Western North America. Missoula, MT: University of Montana [MA thesis]. 2. Arno S., 1984. Timberline: Mountain and Arctic Forest Frontiers. Seattle: The Mountaineers. 3. Balon J., German K., Kozak J., Malara H., WIDACKI W., ZIAJA W., 1995. Regiony fizycznogeograficzne [in:] J. Warszyńska (ed.), Karpaty Polskie: Przyroda, człowiek i jego działalność, Kraków: Uniwersytet Jagielloński, pp. 117-130. 4. BARRY R.G., 1994. Past and potential future changesin mountain environments: A review [in:] M. Beniston(ed.), Mountain environments in changing climates. London-New York: Routledge Publishing Company, pp. 3-33 http://dx.doi.org/10.4324/9780203424957_chapter_1 - 5. BOGAERT R.V., HANECA K., HOOGESTEGER J., JONASSON Ch., DAPPER De M., CALLAGHAN V., 2011. A century of tree line changes in sub-Arctic Sweden shows local and regional variability and only a minor influence of 20th century climate warming. Journal of Biogeography, vol. 38, no. 5, pp. 907-921. 6. BROCKMANN-JEROSCH H., 1919. Baumgrenze und Klimacharakter. Beiträge zur geobotanischen Landesaufnahme, 6, Zürich: Rascher. 7. Caccianiga M., Andreis C., Armiraglio S., LEONELLI G., PELFINI M., SALA D., 2008. Climate continentality and treeline species distribution in the Alps. Plant Biosystems, vol. 142, no. 1, pp. 66-78. 8. CASE B.S., DUNCAN R.P., 2014. A novel framework for disentangling the scale-dependent influences of abiotic factors on alpine treeline position. Ecography, vol. 37, no. 9, pp. 838-851. http://dx.doi.org/10.1111/ecog.00280 - 9. Cogbill C.V., White P.S., 1991. The latitude-elevation relationship for spruce-fir forest and treeline along the Appalachian mountain chain. Vegetatio, vol. 94, no. 2, pp. 153-175. http://dx.doi.org/10.1007/BF00032629 - 10. CZAJKA B., KACZKA R.J., ŁAJCZAK A., 2015a. The dynamics of the timberline ecotone on the asymmetric ridge of the Babia Góra Massif, Western Carpathians. Geographia Polonica, vol. 88, no. 2, pp. 85-102. 11. Czajka B., Kaczka R.J., Łajczak A., 2015b. Timberline in the Carpathians: An overview. Geographia Polonica, vol. 88, no. 2, pp. 7-34. 12. Dalen L., Hofgaard A., 2005. Differential regional tree line dynamics in the Scandes Mountains. Arctic, Antarctic and Alpine Research, vol. 37, no. 3, pp. 284-296. http://dx.doi.org/10.1657/1523-0430(2005)037[0284:DRTDIT]2.0.CO;2 - 13. DÄNIKER A., 1923. Biologische Studien uber Baumund Waldgrenze, insbesondere uber die klimatischen Ursachen und deren Zusammenhange. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 68, Zürich: Naturforschende Gesellschaft. 14. DAUBENMIRE R., 1954. Alpine timberlines in the Americas and their interpretation. Butler University Botanical Studies, vol. 11, art. 14, pp. 119-136. 15. De Quervain A., 1904. Die Hebung der atmosphä-rischen Isothermen in den Schweizer Alpen und ihre Beziehung zu den Höhengrenzen. Gerlands Beiträge zur Geophysik, 6, pp. 481-533. 16. Dolecki L., 1984. Karły świerkowe na połoninach Bieszczadów Zachodnich. Chrońmy Przyrodę Ojczystą, 3, pp.13-20. 17. Fang H., Baiping Z., Yonghui Y., Yunhai Z., Yu P., 2011. Mass elevation effect and its contribution to the altitude of snowline in the Tibetan Plateau and surrounding areas. Arctic, Antarctic, and Alpine Research, vol. 43, no. 2, pp. 207-212. http://dx.doi.org/10.1657/1938-4246-43.2.207 - 18. Fang H., Yonghui Y., Shibao D., Chun W., RANHAO S., JUAN X., BAIPING Z., 2012. Mass elevation effect and its forcing on timberline altitude. Journal of Geographical Sciences, vol. 22, no. 4, pp. 609-616. 19. FEKETE L., BLATTNY T., 1913-1914. Die Verbreitung der forstlich wichtigsten Bäume und Sträucher im Ungarischen Staate. 1 Bd., Selmecbanya. 20. FLIRI F., 1975. Das Klima der Alpen im Raum von Tirol: Monographien zur Landeskunde Tirols. Folge 1 Innsbruck-Munich: Universtitätsverlag Wagner, 21. Furlan D., 1977. The climate of Southeast Europe [in:] C.C. Wallen (ed.), Climates of central and southern Europe. Amsterdam-Oxford-New York: Elsevier, pp. 185-235. 22. GARBARINO M., LINGUA E., WEISBERG P.J., BOTTERO A., MELONI F., MOTTA R., 2013. Land-use history and topographic gradients as driving factors of subalpine Larix decidua forests. Landscape ecology, vol. 28, no. 5, pp. 805-817. 23. Gellrich M., Baur P., Koch B., Zimmermann N.E., 2007. Agricultural land abandonment and natural forest re-growth in the Swiss mountains: A spatially explicit economic analysis. Agricultural Ecosystems Environments, vol. 118, no. 1-4, pp. 93-108. http://dx.doi.org/10.1016/j.agee.2006.05.001 - 24. GERARD F., BUGÁR G., GREGOR M., HALADA L., HAZEU G., HUITI H., KÖHLER R., KOLÁR J., LUQUE S., MALCHER C., OLSCHOFSKY K., PETIT S., PINO J., SMITH G., THOMSON A., WACHOWICZ M., BEZÁK P., BOLTIZIAR M., DEBADTS E., HALABUK A., MANCHESTER S., MOJSES M., PETROVIC F., RODA F., ROSCHER M., TUOMINEN S., ZIESE H., 2006. Linking pan-European land cover change to pressures on biodiversity – Biopress final report 1st January 2003 - 31st December 2005, sections 5 and 6. NERC/Centre for Ecology & Hydrology, http://nora.nerc.ac.uk/500891/1/060228finalr eport.pdf [5 March 2015]. 25. Golubec M. A., 1978. El'niki Ukrainskih Karpat. Kiev: Naukova Dumka. 26. Grace J., 1989. Tree lines. Philosophical Transactions of the Royal Society, Series B, 324, pp. 233-245 http://dx.doi.org/10.1098/rstb.1989.0046 - 27. GRIFFITHS P., KUEMMERLE T., BAUMANN M., RADELOFF V.C., ABRUDAN I.V., LIESKOVSKY J., MUNTEANU C., OSTAPOWICZ K., HOSTERT P., 2014. Forest disturbances, forest recovery, and changes in forest types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image composites. Remote Sensing of Environment, 151, pp. 72-88. http://dx.doi.org/10.1016/j.rse.2013.04.022 - 28. GUZIK M., 2008. Analiza wpływu czynników naturalnych i antropogenicznych na kształtowanie się zasięgu lasu i kosodrzewiny w Tatrach. Kraków: Uniwersytet Rolniczy im. Hugona Kołłątaja. Wydział Leśny. Katedra Botaniki Leśnej i Ochrony Przyrody [PhD thesis]. 29. Hermes K., 1955. Die Lage der oberen Waldgrenze in den Gebirgen der Erde und ihr Abstand zur Schneegrenze (Kolner geographische Arbeiten) . Kö ln: Selbstverlag des Geographischen Instituts der Universität. 30. Hess M., 1965. Piętra klimatyczne w polskich Karpatach Zachodnich. Zeszyty Naukowe UJ. Prace Geograficzne, 11, Kraków: Uniwersytet Jagielloński. 31. Holtmeier F.K., 1974. Geooekologische Beobachtungen und Studien an der subarktischen und alpinen Waldgrenze in vergleichender Sicht. Wiesbaden: Franz Steiner. 32. Holtmeier F-H., Broll G., 2005. Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Global Ecology and Biogeography, vol. 14, no. 5, pp. 395-410 http://dx.doi.org/10.1111/j.1466-822X.2005.00168.x -38. Jakób M.L., 1937. Uwagi nad górną granicą lasu w Gorganach Centralnych. Sylwan, 2-3, pp. 89-101. 33. Holtmeier F.H., 2009. Mountain timberlines: Ecology, patchiness, and dynamics. Advances in Global Change Research, 36, Dordrecht: Springer. http://dx.doi.org/10.1007/978-1-4020-9705-8 - 34. HROMADKA J., 1956. Nové orografické třídění ČSR. Sborník Československé společnosti zeměpisné, 61, 161-180. 35. Huzui A.E., Calin I., Patru-Stupariu I., 2012. Spatial pattern analyses of landscape using multitemporal data sources [in:] I. Pătru-Stupariu, M. Pătroescu, C.I. Iojă, L. Rozylowicz (eds.), Procedia Environmental Sciences: 2011 International Conference of Environment-Landscape-European Identity: Volume 14, pp. 98-110. 36. Imhof E., 1900. Die Waldgrenze in der Schweiz. Gerland's Beitrage zur Geophysik, vol. 4, no. 3, Leipzig: Engelmann, pp. 241-330. 37. IRLAND L.C., KREMENETSKA E., 2009. Practical economics of forest ecosystem management: The case of the Ukrainian Carpathians [in:] S.W.S. Keeton (ed.), Ecological economics and sustainable forest management: Developing a transdisciplinary approach for the Carpathian Mountains, Lvov: Ukrainian National Forestry University Press, pp. 180-200. 38. Jakób M.L., 1937. Uwagi nad górną granicą lasu w Gorganach Centralnych. Sylwan, 2-3, pp. 89-101. 39. Jennes J., 2006. opographic Position Index (tpi_jen. avx) extension for ArcView 3. x, v. 1.3 a. Jenness Enterprises, http://www.jennessent.com/arcview/tpi.htm [5 March 2015]. Creative Commons Attribution BY-ND 3.0 PL license Licencja Creative Commons Uznanie autorstwa-Bez utworów zależnych 3.0 Polska CC-BY CC-BY-ND CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 http://195.187.71.2/ipac20/ipac.jsp?profile=geogpan&index=BOCLC&term=ee95400564 CBGiOS. IGiPZ PAN, sygn.: Cz.2085, Cz.2173, Cz.2406 timberline global factors latitude influence mass-elevation effect Carpathians górna granica lasu czynniki globalne wpływ szerokości geograficznej Karpaty Text Tekst 2015 ftrcin https://doi.org/10.4324/9780203424957_chapter_1 https://doi.org/10.1111/ecog.00280 https://doi.org/10.1007/BF00032629 https://doi.org/10.1657/1523-0430(2005)037[0284:DRTDIT]2.0.CO;2 https://doi.org/10.1657/1938-4246-43.2.207 https://doi.org/10.1 2022-11-28T01:31:06Z 24 cm The pattern of timberline distribution on mountain ranges world-wide is related to global factors. The basic factor is temperature and the amount of radiation, which falls with increasing distance from the equator. Additionally, this basic relationship is overlaid by the specific features of the type of climate on the massif (degree of continentality or oceanity) and the mass-elevation effect. In the Carpathians, the mass elevation effectseems to have bigger impact on the location of timberline (R2 = 0.71, p = 0.00) than their latitudinal location (R2 = 0.56, p = 0.00). The timberline altitude changes by 70 m a.s.l. (±20 m) with each degree of latitude. The influenceof the type of the climate is complex and it is not clearly visible due to past and recent human impact. 24 cm The pattern of timberline distribution on mountain ranges world-wide is related to global factors. The basic factor is temperature and the amount of radiation, which falls with increasing distance from the equator. Additionally, this basic relationship is overlaid by the specific features of the type of climate on the massif (degree of continentality or oceanity) and the mass-elevation effect. In the Carpathians, the mass elevation effectseems to have bigger impact on the location of timberline (R2 = 0.71, p = 0.00) than their latitudinal location (R2 = 0.56, p = 0.00). The timberline altitude changes by 70 m a.s.l. (±20 m) with each degree of latitude. The influenceof the type of the climate is complex and it is not clearly visible due to past and recent human impact. Text Antarctic and Alpine Research Arctic Digital Repository of Scientific Institutes (RCIN) 3 33 Abingdon, UK