The Effects of Recent and Relict Permafrost Disturbances on Tundra Vegetation, Cape Bounty, Melville Island, Nunavut

Thesis (Master, Geography) -- Queen's University, 2011-07-28 11:42:47.636 Permafrost disturbances, including active layer detachments (ALDs), have occurred both recently and historically at Cape Bounty, Melville Island. These recent and relict ALDs were studied to determine their short- and lon...

Full description

Bibliographic Details
Main Author: Cassidy, Alison Elizabeth
Other Authors: Lamoureux, Scott F., Treitz, Paul, Geography
Format: Thesis
Language:English
Published: 2011
Subjects:
Online Access:http://hdl.handle.net/1974/6629
id ftqueensuniv:oai:qspace.library.queensu.ca:1974/6629
record_format openpolar
spelling ftqueensuniv:oai:qspace.library.queensu.ca:1974/6629 2023-05-15T17:48:05+02:00 The Effects of Recent and Relict Permafrost Disturbances on Tundra Vegetation, Cape Bounty, Melville Island, Nunavut Cassidy, Alison Elizabeth Lamoureux, Scott F. Treitz, Paul Geography 2011-07-28 11:42:47.636 http://hdl.handle.net/1974/6629 eng eng Canadian theses http://hdl.handle.net/1974/6629 This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner. Geomorphology Biogeography thesis 2011 ftqueensuniv 2020-12-29T09:06:13Z Thesis (Master, Geography) -- Queen's University, 2011-07-28 11:42:47.636 Permafrost disturbances, including active layer detachments (ALDs), have occurred both recently and historically at Cape Bounty, Melville Island. These recent and relict ALDs were studied to determine their short- and long-term landscape effects. Six relict detachments showed altered vegetation and site characteristics, despite 60 or more years of recovery. Of the environmental variables studied, including soil moisture, soil temperature, and active layer depth, soil moisture showed the greatest changes in disturbed zones. These were attributed to the concavity of disturbance, which allows for more snow accumulation. Two vegetation types influenced by moisture regimes, polar desert and mesic heath, were compared to determine the role of moisture in recovery. The best indicators of disturbance differed in areas of different moisture regimes, with canopy height showing increases in disturbed mesic heath zones, while Normalized Difference Vegetation Index (NDVI) values increased in polar desert disturbances. Ultimately, the comparison of vegetation in disturbed and undisturbed zones revealed differences to be highly localized and minimal. Remote sensing was utilized to compare the effects of recent and relict disturbances as seen on satellite and airborne imagery. Vegetation was classified using NDVI, and zonal separation of these values in ALDs revealed the upper scar areas and lower toe zones contained significantly different NDVI values. The upper scar values were similar to undisturbed control areas, as blocks of vegetation in these areas often contain unmodified vegetation, which later helps with revegetation. The lower toe zone displayed both elevated and lower NDVI values, as material accumulates in these areas but often in a complex with bare soil. Remote sensing techniques also allowed for site characterization of disturbances, with physiographic factors including slope and flow properties determined through satellite imagery. Slope values ranged from 3 to 13 degrees in each disturbance, but were found to be slightly lower in relict disturbances, as recovery and revegetation have reduced these slopes. Flow paths were identified in ALDs, however similar patterns were also identified in surrounding undisturbed landscapes. Given the small scale of many ALDs, it is difficult to characterize the nature of the changes associated with these events, particularly for relict ALDs. M.Sc. Thesis Nunavut permafrost polar desert Tundra Melville Island Queen's University, Ontario: QSpace Cape Bounty ENVELOPE(-109.542,-109.542,74.863,74.863) Nunavut
institution Open Polar
collection Queen's University, Ontario: QSpace
op_collection_id ftqueensuniv
language English
topic Geomorphology
Biogeography
spellingShingle Geomorphology
Biogeography
Cassidy, Alison Elizabeth
The Effects of Recent and Relict Permafrost Disturbances on Tundra Vegetation, Cape Bounty, Melville Island, Nunavut
topic_facet Geomorphology
Biogeography
description Thesis (Master, Geography) -- Queen's University, 2011-07-28 11:42:47.636 Permafrost disturbances, including active layer detachments (ALDs), have occurred both recently and historically at Cape Bounty, Melville Island. These recent and relict ALDs were studied to determine their short- and long-term landscape effects. Six relict detachments showed altered vegetation and site characteristics, despite 60 or more years of recovery. Of the environmental variables studied, including soil moisture, soil temperature, and active layer depth, soil moisture showed the greatest changes in disturbed zones. These were attributed to the concavity of disturbance, which allows for more snow accumulation. Two vegetation types influenced by moisture regimes, polar desert and mesic heath, were compared to determine the role of moisture in recovery. The best indicators of disturbance differed in areas of different moisture regimes, with canopy height showing increases in disturbed mesic heath zones, while Normalized Difference Vegetation Index (NDVI) values increased in polar desert disturbances. Ultimately, the comparison of vegetation in disturbed and undisturbed zones revealed differences to be highly localized and minimal. Remote sensing was utilized to compare the effects of recent and relict disturbances as seen on satellite and airborne imagery. Vegetation was classified using NDVI, and zonal separation of these values in ALDs revealed the upper scar areas and lower toe zones contained significantly different NDVI values. The upper scar values were similar to undisturbed control areas, as blocks of vegetation in these areas often contain unmodified vegetation, which later helps with revegetation. The lower toe zone displayed both elevated and lower NDVI values, as material accumulates in these areas but often in a complex with bare soil. Remote sensing techniques also allowed for site characterization of disturbances, with physiographic factors including slope and flow properties determined through satellite imagery. Slope values ranged from 3 to 13 degrees in each disturbance, but were found to be slightly lower in relict disturbances, as recovery and revegetation have reduced these slopes. Flow paths were identified in ALDs, however similar patterns were also identified in surrounding undisturbed landscapes. Given the small scale of many ALDs, it is difficult to characterize the nature of the changes associated with these events, particularly for relict ALDs. M.Sc.
author2 Lamoureux, Scott F.
Treitz, Paul
Geography
format Thesis
author Cassidy, Alison Elizabeth
author_facet Cassidy, Alison Elizabeth
author_sort Cassidy, Alison Elizabeth
title The Effects of Recent and Relict Permafrost Disturbances on Tundra Vegetation, Cape Bounty, Melville Island, Nunavut
title_short The Effects of Recent and Relict Permafrost Disturbances on Tundra Vegetation, Cape Bounty, Melville Island, Nunavut
title_full The Effects of Recent and Relict Permafrost Disturbances on Tundra Vegetation, Cape Bounty, Melville Island, Nunavut
title_fullStr The Effects of Recent and Relict Permafrost Disturbances on Tundra Vegetation, Cape Bounty, Melville Island, Nunavut
title_full_unstemmed The Effects of Recent and Relict Permafrost Disturbances on Tundra Vegetation, Cape Bounty, Melville Island, Nunavut
title_sort effects of recent and relict permafrost disturbances on tundra vegetation, cape bounty, melville island, nunavut
publishDate 2011
url http://hdl.handle.net/1974/6629
long_lat ENVELOPE(-109.542,-109.542,74.863,74.863)
geographic Cape Bounty
Nunavut
geographic_facet Cape Bounty
Nunavut
genre Nunavut
permafrost
polar desert
Tundra
Melville Island
genre_facet Nunavut
permafrost
polar desert
Tundra
Melville Island
op_relation Canadian theses
http://hdl.handle.net/1974/6629
op_rights This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
_version_ 1766153281831174144