Mapping pathogen distributions and population connectivity of a sentinel Arctic species, the polar bear (Ursus maritimus) across a changing North American Arctic
Large-scale environmental shifts are expanding pathogen distributions making many northern species more vulnerable to disease. To understand such rapidly changing host-pathogen dynamics and potentially mitigate impacts of novel pathogens on northern peoples and ecosystems, I quantify population conn...
Main Author: | |
---|---|
Other Authors: | , |
Format: | Thesis |
Language: | English |
Published: |
2024
|
Subjects: | |
Online Access: | https://hdl.handle.net/1974/32712 |
id |
ftqueensuniv:oai:https://qspace.library.queensu.ca:1974/32712 |
---|---|
record_format |
openpolar |
spelling |
ftqueensuniv:oai:https://qspace.library.queensu.ca:1974/32712 2024-06-23T07:49:41+00:00 Mapping pathogen distributions and population connectivity of a sentinel Arctic species, the polar bear (Ursus maritimus) across a changing North American Arctic Tschritter, Christina Biology Lougheed, Stephen C. 2024-01-05T19:32:39Z application/pdf https://hdl.handle.net/1974/32712 eng eng Canadian theses https://hdl.handle.net/1974/32712 Queen's University's Thesis/Dissertation Non-Exclusive License for Deposit to QSpace and Library and Archives Canada ProQuest PhD and Master's Theses International Dissemination Agreement Intellectual Property Guidelines at Queen's University Copying and Preserving Your Thesis This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner. Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ Molecular Ecology Wildlife disease surveillance population genetics thesis 2024 ftqueensuniv 2024-05-29T00:18:35Z Large-scale environmental shifts are expanding pathogen distributions making many northern species more vulnerable to disease. To understand such rapidly changing host-pathogen dynamics and potentially mitigate impacts of novel pathogens on northern peoples and ecosystems, I quantify population connectivity and pathogen presence in a sentinel Arctic species, the polar bear (Ursus maritimus). Polar bears are apex predators that can provide insight into pathogen distribution and prevalence across marine and terrestrial ecosystems. The focus of my dissertation was to develop molecular tools to monitor polar bear populations and to promote co-management through non-invasive and harvest-based sampling. More specifically I aimed to: (i) Delineate polar bear population structure using genome-wide panels of Single Nucleotide Polymorphic markers (SNPs) to interpret population connectivity that might impact pathogen spread; (ii) Develop and validate a sensitive multiplexed, magnetic-capture, and digital PCR tool for surveillance of five zoonotic pathogens (three bacteria Erysipelothrix rhusiopathiae, Francisella tularensis, and Mycobacterium tuberculosis complex (MTBC), and two parasites T. gondii and Trichinella spp.) relevant to wildlife and human health; and (iii) Quantify the spatial distributions of focal pathogens in polar bear tissues and observe associations between pathogen detections and predictors. Despite the mobility of polar bears and their large home ranges, I found three population clusters that coincide with Arctic ice ecoregions. I made novel pathogen detections (first detection of E. rhusiopathiae in a polar bear, first molecular detection of F. tularensis in the tundra, and the first detection of a MTBC member in Arctic wildlife) and provide insights on how populations might respond to future exposure to novel pathogens. Overall, we found that harvest season and human settlements were important predictors of presence for some pathogens. I envision the establishment of a long-term harvest-based ... Thesis Arctic Human health Tundra Ursus maritimus Queen's University, Ontario: QSpace Arctic |
institution |
Open Polar |
collection |
Queen's University, Ontario: QSpace |
op_collection_id |
ftqueensuniv |
language |
English |
topic |
Molecular Ecology Wildlife disease surveillance population genetics |
spellingShingle |
Molecular Ecology Wildlife disease surveillance population genetics Tschritter, Christina Mapping pathogen distributions and population connectivity of a sentinel Arctic species, the polar bear (Ursus maritimus) across a changing North American Arctic |
topic_facet |
Molecular Ecology Wildlife disease surveillance population genetics |
description |
Large-scale environmental shifts are expanding pathogen distributions making many northern species more vulnerable to disease. To understand such rapidly changing host-pathogen dynamics and potentially mitigate impacts of novel pathogens on northern peoples and ecosystems, I quantify population connectivity and pathogen presence in a sentinel Arctic species, the polar bear (Ursus maritimus). Polar bears are apex predators that can provide insight into pathogen distribution and prevalence across marine and terrestrial ecosystems. The focus of my dissertation was to develop molecular tools to monitor polar bear populations and to promote co-management through non-invasive and harvest-based sampling. More specifically I aimed to: (i) Delineate polar bear population structure using genome-wide panels of Single Nucleotide Polymorphic markers (SNPs) to interpret population connectivity that might impact pathogen spread; (ii) Develop and validate a sensitive multiplexed, magnetic-capture, and digital PCR tool for surveillance of five zoonotic pathogens (three bacteria Erysipelothrix rhusiopathiae, Francisella tularensis, and Mycobacterium tuberculosis complex (MTBC), and two parasites T. gondii and Trichinella spp.) relevant to wildlife and human health; and (iii) Quantify the spatial distributions of focal pathogens in polar bear tissues and observe associations between pathogen detections and predictors. Despite the mobility of polar bears and their large home ranges, I found three population clusters that coincide with Arctic ice ecoregions. I made novel pathogen detections (first detection of E. rhusiopathiae in a polar bear, first molecular detection of F. tularensis in the tundra, and the first detection of a MTBC member in Arctic wildlife) and provide insights on how populations might respond to future exposure to novel pathogens. Overall, we found that harvest season and human settlements were important predictors of presence for some pathogens. I envision the establishment of a long-term harvest-based ... |
author2 |
Biology Lougheed, Stephen C. |
format |
Thesis |
author |
Tschritter, Christina |
author_facet |
Tschritter, Christina |
author_sort |
Tschritter, Christina |
title |
Mapping pathogen distributions and population connectivity of a sentinel Arctic species, the polar bear (Ursus maritimus) across a changing North American Arctic |
title_short |
Mapping pathogen distributions and population connectivity of a sentinel Arctic species, the polar bear (Ursus maritimus) across a changing North American Arctic |
title_full |
Mapping pathogen distributions and population connectivity of a sentinel Arctic species, the polar bear (Ursus maritimus) across a changing North American Arctic |
title_fullStr |
Mapping pathogen distributions and population connectivity of a sentinel Arctic species, the polar bear (Ursus maritimus) across a changing North American Arctic |
title_full_unstemmed |
Mapping pathogen distributions and population connectivity of a sentinel Arctic species, the polar bear (Ursus maritimus) across a changing North American Arctic |
title_sort |
mapping pathogen distributions and population connectivity of a sentinel arctic species, the polar bear (ursus maritimus) across a changing north american arctic |
publishDate |
2024 |
url |
https://hdl.handle.net/1974/32712 |
geographic |
Arctic |
geographic_facet |
Arctic |
genre |
Arctic Human health Tundra Ursus maritimus |
genre_facet |
Arctic Human health Tundra Ursus maritimus |
op_relation |
Canadian theses https://hdl.handle.net/1974/32712 |
op_rights |
Queen's University's Thesis/Dissertation Non-Exclusive License for Deposit to QSpace and Library and Archives Canada ProQuest PhD and Master's Theses International Dissemination Agreement Intellectual Property Guidelines at Queen's University Copying and Preserving Your Thesis This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner. Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
_version_ |
1802640266205593600 |