Investigating the Mineralogy and Morphology of Subglacial Volcanoes on Earth and Mars

In this dissertation, we have examined mineral assemblages and geomorphologic features in the Sisyphi Planum region of Mars, as well as examined the mineral assemblage of palagonite in Iceland. Chapter 2 is focused on the mineral assemblages detected on possible glaciovolcanic edifices in the Sisyph...

Full description

Bibliographic Details
Main Author: Sheridan E. Ackiss
Format: Thesis
Language:unknown
Published: 2019
Subjects:
Online Access:https://doi.org/10.25394/pgs.7811642.v1
Description
Summary:In this dissertation, we have examined mineral assemblages and geomorphologic features in the Sisyphi Planum region of Mars, as well as examined the mineral assemblage of palagonite in Iceland. Chapter 2 is focused on the mineral assemblages detected on possible glaciovolcanic edifices in the Sisyphi Planum region of Mars. Minerals were identified utilizing visible/near-infrared orbital spectra from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). Analysis of eleven CRISM images located on the volcanic edifices revealed three distinct spectral classes in the region which are interpreted to be: gypsum-dominated, smectite-zeolite- iron oxide-dominated (possibly palagonite), and polyhydrated sulfate-dominated material. The possible palagonite detections on the volcanic edifices, the geomorphology of the region, and the analogous terrestrial mineralogy of subglacial eruptions strongly suggests the formation of these minerals during subglacial eruptions or associated hydrothermal systems. This implies that thick water ice sheets were present in this region in the late Noachian or early Hesperian, and that the subglacial hydrothermal systems could have supported habitable environments with excellent biosignature preservation potential. Chapter 3 is focused on evaluating the variability of the composition and crystallinity of palagonite on Earth in order to inform efforts to identify it on Mars. We hypothesized that variability in palagonite composition and crystallinity could occur due to differences in environmental conditions during formation. Palagonite samples were collected in Iceland at subglacial volcanic sites around Reykjavík in the Western Volcanic Zone, on the southern coast in the Eastern Volcanic Zone, and from the Herðubreið tuya and Askja volcano in the Northern Volcanic Zone. Visible/near-infrared reflectance spectroscopy, thermal-infrared emission spectroscopy, and quantitative XRD were used to assess the bulk mineralogy, crystallinity, and clay composition of all samples. Results ...