Potentially Suitable Geographical Area for Monochamous alternatus under Current and Future Climatic Scenarios Based on Optimized MaxEnt Model
SIMPLE SUMMARY: Recently, Monochamus alternatus have broken through their original distribution areas, showing a tendency to spread to higher latitudes and successfully colonizing the newly invaded areas. Hence, it is important to analyze the potential global suitable area of M. alternatus with the...
Published in: | Insects |
---|---|
Main Authors: | , , , |
Format: | Text |
Language: | English |
Published: |
MDPI
2023
|
Subjects: | |
Online Access: | http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962367/ http://www.ncbi.nlm.nih.gov/pubmed/36835751 https://doi.org/10.3390/insects14020182 |
Summary: | SIMPLE SUMMARY: Recently, Monochamus alternatus have broken through their original distribution areas, showing a tendency to spread to higher latitudes and successfully colonizing the newly invaded areas. Hence, it is important to analyze the potential global suitable area of M. alternatus with the latest occurrence coordinates for the monitoring and scientific prevention and control of M. alternatus. The optimized MaxEnt model was first used to predict and analyze the potentially suitable areas for M. alternatus on a global scale. The results showed that the main temperature factors influencing the potential distribution of M. alternatus are monthly mean temperature difference (Bio2), minimum temperature of the coldest month (Bio6), and mean temperature of the warmest quarter (Bio10) and that the main precipitation factors are annual precipitation (Bio12) and precipitation of the driest month (Bio14). Our results indicated that the current and future potential suitable areas of M. alternatus might be distributed worldwide. ABSTRACT: M. alternatus is considered to be an important and effective insect vector for the spread of the important international forest quarantine pest, Bursaphelenchus xylophilus. The precise determination of potential suitable areas of M. alternatus is essential to monitor, prevent, and control M. alternatus worldwide. According to the distribution points and climatic variables, the optimized MaxEnt model and ArcGIS were used to predict the current and future potentially suitable areas of M. alternatus worldwide. The optimized MaxEnt model parameters were set as feature combination (FC) = LQHP and β = 1.5, which were determined by the values of AUC(diff), OR(10), and ΔAICc. Bio2, Bio6, Bio10, Bio12, and Bio14 were the dominant bioclimatic variables affecting the distribution of M. alternatus. Under the current climate conditions, the potentially suitable habitats of M. alternatus were distributed across all continents except Antarctica, accounting for 4.17% of the Earth’s total land area. ... |
---|