Multiple carbon cycle mechanisms associated with the glaciation of Marine Isotope Stage 4

Here we use high-precision carbon isotope data (δ(13)C-CO(2)) to show atmospheric CO(2) during Marine Isotope Stage 4 (MIS 4, ~70.5-59 ka) was controlled by a succession of millennial-scale processes. Enriched δ(13)C-CO(2) during peak glaciation suggests increased ocean carbon storage. Variations in...

Full description

Bibliographic Details
Published in:Nature Communications
Main Authors: Menking, James A., Shackleton, Sarah A., Bauska, Thomas K., Buffen, Aron M., Brook, Edward J., Barker, Stephen, Severinghaus, Jeffrey P., Dyonisius, Michael N., Petrenko, Vasilii V.
Format: Text
Language:English
Published: Nature Publishing Group UK 2022
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481522/
http://www.ncbi.nlm.nih.gov/pubmed/36114188
https://doi.org/10.1038/s41467-022-33166-3
Description
Summary:Here we use high-precision carbon isotope data (δ(13)C-CO(2)) to show atmospheric CO(2) during Marine Isotope Stage 4 (MIS 4, ~70.5-59 ka) was controlled by a succession of millennial-scale processes. Enriched δ(13)C-CO(2) during peak glaciation suggests increased ocean carbon storage. Variations in δ(13)C-CO(2) in early MIS 4 suggest multiple processes were active during CO(2) drawdown, potentially including decreased land carbon and decreased Southern Ocean air-sea gas exchange superposed on increased ocean carbon storage. CO(2) remained low during MIS 4 while δ(13)C-CO(2) fluctuations suggest changes in Southern Ocean and North Atlantic air-sea gas exchange. A 7 ppm increase in CO(2) at the onset of Dansgaard-Oeschger event 19 (72.1 ka) and 27 ppm increase in CO(2) during late MIS 4 (Heinrich Stadial 6, ~63.5-60 ka) involved additions of isotopically light carbon to the atmosphere. The terrestrial biosphere and Southern Ocean air-sea gas exchange are possible sources, with the latter event also involving decreased ocean carbon storage.