Antarctic Peninsula warming triggers enhanced basal melt rates throughout West Antarctica

The observed acceleration of ice shelf basal melt rates throughout West Antarctica could destabilize continental ice sheets and markedly increase global sea level. Explanations for decadal-scale melt intensification have focused on processes local to shelf seas surrounding the ice shelves. A suite o...

Full description

Bibliographic Details
Published in:Science Advances
Main Authors: Flexas, M. Mar, Thompson, Andrew F., Schodlok, Michael P., Zhang, Hong, Speer, Kevin
Format: Text
Language:English
Published: American Association for the Advancement of Science 2022
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9374342/
http://www.ncbi.nlm.nih.gov/pubmed/35960791
https://doi.org/10.1126/sciadv.abj9134
Description
Summary:The observed acceleration of ice shelf basal melt rates throughout West Antarctica could destabilize continental ice sheets and markedly increase global sea level. Explanations for decadal-scale melt intensification have focused on processes local to shelf seas surrounding the ice shelves. A suite of process-based model experiments, guided by CMIP6 forcing scenarios, show that freshwater forcing from the Antarctic Peninsula, propagated between marginal seas by a coastal boundary current, causes enhanced melting throughout West Antarctica. The freshwater anomaly stratifies the ocean in front of the ice shelves and modifies vertical and lateral heat fluxes, enhancing heat transport into ice shelf cavities and increasing basal melt. Increased glacial runoff at the Antarctic Peninsula, one of the first signatures of a warming climate in Antarctica, emerges as a key trigger for increased ice shelf melt rates in the Amundsen and Bellingshausen Seas.