Occupational cold exposure and symptoms of carpal tunnel syndrome – a population-based study

BACKGROUND: Cold exposure is an underrecognized occupational hazard that may increase the risk of peripheral nerve entrapment. The aim of this study was to determine if self-reported occupational exposure to contact and ambient cooling was associated with symptoms of carpal tunnel syndrome (CTS). ME...

Full description

Bibliographic Details
Published in:BMC Musculoskeletal Disorders
Main Authors: Stjernbrandt, Albin, Vihlborg, Per, Wahlström, Viktoria, Wahlström, Jens, Lewis, Charlotte
Format: Text
Language:English
Published: BioMed Central 2022
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9210706/
http://www.ncbi.nlm.nih.gov/pubmed/35725430
https://doi.org/10.1186/s12891-022-05555-8
Description
Summary:BACKGROUND: Cold exposure is an underrecognized occupational hazard that may increase the risk of peripheral nerve entrapment. The aim of this study was to determine if self-reported occupational exposure to contact and ambient cooling was associated with symptoms of carpal tunnel syndrome (CTS). METHODS: In this mainly cross-sectional study, surveys were conducted on a population-based sample of men and women between 18 and 70 years of age, living in northern Sweden. Cold exposure and presence of symptoms suggestive of CTS were subjectively reported. Associations between exposure and outcome were evaluated using logistic regression. RESULTS: The study included 2,703 women and 2,314 men, with a median age of 60 years (interquartile range 19). Symptoms of CTS were reported by 453 (9.2%). Being highly occupationally exposed (almost always) to contact cooling of the hands was associated with reporting CTS (OR 3.20; 95% CI 1.62–6.33), as was ambient cooling (OR 2.00; 95% CI 1.03–3.88) and severe ambient cooling (OR 4.02 95% CI 2.09–7.71), after adjusting for age, gender, body mass index, current daily smoking, diabetes mellitus, joint disease, and hand-arm vibration exposure. The point estimates increased with longer daily exposure duration. For workers exposed to severe ambient cooling for more than half of their working hours, in addition to performing heavy manual handling every day, the OR for reporting CTS was 7.25 (95% CI 3.88–13.53), with a positive additive interaction effect (expressed as relative excess risk due to interaction) of 4.67. CONCLUSIONS: Self-reported occupational exposure to contact and ambient cooling was associated with symptoms suggestive of CTS. There were statistically significant positive exposure–response patterns for time spent exposed to contact and ambient cooling at work in relation to reporting symptoms of CTS. Positive additive interaction effects between cold exposure and heavy manual handling were also found. Since there was important potential uncontrolled confounding regarding ...