Modeling and predicting the spread of COVID-19: a continental analysis

The world is currently overwhelmed with the perils of the outbreak of the coronavirus disease 2019 (COVID-19) pandemic. As of May 18, 2020, there were 4,819,102 confirmed cases, of which there were 316,959 deaths worldwide. The devastating effects of the COVID-19 pandemic on the world economy are mo...

Full description

Bibliographic Details
Main Authors: Ojokoh, B.A., Sarumi, O.A., Salako, K.V., Gabriel, A.J., Taiwo, A.E., Johnson, O.V., Adegun, I.P., Babalola, O.T.
Format: Text
Language:English
Published: 2022
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8988993/
https://doi.org/10.1016/B978-0-323-90769-9.00039-6
Description
Summary:The world is currently overwhelmed with the perils of the outbreak of the coronavirus disease 2019 (COVID-19) pandemic. As of May 18, 2020, there were 4,819,102 confirmed cases, of which there were 316,959 deaths worldwide. The devastating effects of the COVID-19 pandemic on the world economy are more grievous than many natural disasters like earthquakes and tsunamis in history. Understanding the spread pattern of COVID-19 and predicting the disease dynamics have been essential to assist policymakers and health practitioners in the public and private health sector in providing an efficient way of alleviating the effects of the pandemic across continents. Scholars have steadily worked to provide timely information. Nevertheless, there is a lack of information on which insights can be derived from all these endeavors, especially with regard to modeling and prediction techniques. In this study, we used a literature synthesis approach to provide a narrative review of the current research efforts geared toward predicting the spread of COVID-19 across continents. Such information is useful to provide a global perspective of the virus particularly with regard to modeling and prediction techniques and their outcomes. A total of 69 peer-reviewed articles were reviewed. We found that most articles were from Asia (34.8%) and Europe (23.2%), followed by North America (14.5%), and very few emanated from other continents including Africa and Australia (6.8% each), while no study was reported in Antarctica. Most of the modeling and predictions were based on compartmental epidemiologic models and a few used advanced machine learning techniques. While some models have accurately predicted the end of the epidemic in some countries, other predictions strongly deviate from reality. Interestingly, some studies showed that combining artificial intelligence with classical compartmental models provides a better prediction of the disease spread. Assumptions made when parameterizing the models might be wrong and might not suit the local ...