Sea Ice Dynamics Drive Benthic Microbial Communities in McMurdo Sound, Antarctica

Climate change is driving dramatic variability in sea ice dynamics, a key driver in polar marine ecosystems. Projected changes in Antarctica suggest that regional warming will force dramatic shifts in sea ice thickness and persistence, altering sea ice-associated primary production and deposition to...

Full description

Bibliographic Details
Published in:Frontiers in Microbiology
Main Authors: Currie, Ashleigh A., Marshall, Alexis J., Lohrer, Andrew M., Cummings, Vonda J., Seabrook, Sarah, Cary, S. Craig
Format: Text
Language:English
Published: Frontiers Media S.A. 2021
Subjects:
Ice
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8581541/
https://doi.org/10.3389/fmicb.2021.745915
id ftpubmed:oai:pubmedcentral.nih.gov:8581541
record_format openpolar
spelling ftpubmed:oai:pubmedcentral.nih.gov:8581541 2023-05-15T13:33:23+02:00 Sea Ice Dynamics Drive Benthic Microbial Communities in McMurdo Sound, Antarctica Currie, Ashleigh A. Marshall, Alexis J. Lohrer, Andrew M. Cummings, Vonda J. Seabrook, Sarah Cary, S. Craig 2021-10-28 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8581541/ https://doi.org/10.3389/fmicb.2021.745915 en eng Frontiers Media S.A. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8581541/ http://dx.doi.org/10.3389/fmicb.2021.745915 Copyright © 2021 Currie, Marshall, Lohrer, Cummings, Seabrook and Cary. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. CC-BY Front Microbiol Microbiology Text 2021 ftpubmed https://doi.org/10.3389/fmicb.2021.745915 2021-11-14T01:53:40Z Climate change is driving dramatic variability in sea ice dynamics, a key driver in polar marine ecosystems. Projected changes in Antarctica suggest that regional warming will force dramatic shifts in sea ice thickness and persistence, altering sea ice-associated primary production and deposition to the seafloor. To improve our understanding of the impacts of sea ice change on benthic ecosystems, we directly compared the benthic microbial communities underlying first-year sea ice (FYI) and multi-year sea ice (MYI). Using two tractable coastal habitats in McMurdo Sound, Antarctica, where FYI (Cape Evans) and MYI (New Harbour) prevail, we show that the structure and composition of the benthic microbial communities reflect the legacy of sea ice dynamics. At Cape Evans, an enrichment of known heterotrophic algal polysaccharide degrading taxa (e.g., Flavobacteriaceae, unclassified Gammaproteobacteria, and Rubritaleaceae) and sulfate-reducing bacteria (e.g., Desulfocapsaceae) correlated with comparatively higher chlorophyll a (14.2±0.8μgg(−1)) and total organic carbon content (0.33%±0.04), reflecting increased productivity and seafloor deposition beneath FYI. Conversely, at New Harbour, an enrichment of known archaeal (e.g., Nitrosopumilaceae) and bacterial (e.g., Woeseiaceae and Nitrospiraceae) chemoautotrophs was common in sediments with considerably lower chlorophyll a (1.0±0.24μgg(−1)) and total organic carbon content (0.17%±0.01), reflecting restricted productivity beneath MYI. We also report evidence of a submarine discharge of sub-permafrost brine from Taylor Valley into New Harbour. By comparing our two study sites, we show that under current climate-warming scenarios, changes to sea ice productivity and seafloor deposition are likely to initiate major shifts in benthic microbial communities, with heterotrophic organic matter degradation processes becoming increasingly important. This study provides the first assessment of how legacy sea ice conditions influence benthic microbial communities in Antarctica, ... Text Antarc* Antarctica Ice McMurdo Sound permafrost Sea ice PubMed Central (PMC) Cape Evans ENVELOPE(161.550,161.550,-75.100,-75.100) McMurdo Sound New Harbour ENVELOPE(163.850,163.850,-77.600,-77.600) Taylor Valley ENVELOPE(163.000,163.000,-77.617,-77.617) Frontiers in Microbiology 12
institution Open Polar
collection PubMed Central (PMC)
op_collection_id ftpubmed
language English
topic Microbiology
spellingShingle Microbiology
Currie, Ashleigh A.
Marshall, Alexis J.
Lohrer, Andrew M.
Cummings, Vonda J.
Seabrook, Sarah
Cary, S. Craig
Sea Ice Dynamics Drive Benthic Microbial Communities in McMurdo Sound, Antarctica
topic_facet Microbiology
description Climate change is driving dramatic variability in sea ice dynamics, a key driver in polar marine ecosystems. Projected changes in Antarctica suggest that regional warming will force dramatic shifts in sea ice thickness and persistence, altering sea ice-associated primary production and deposition to the seafloor. To improve our understanding of the impacts of sea ice change on benthic ecosystems, we directly compared the benthic microbial communities underlying first-year sea ice (FYI) and multi-year sea ice (MYI). Using two tractable coastal habitats in McMurdo Sound, Antarctica, where FYI (Cape Evans) and MYI (New Harbour) prevail, we show that the structure and composition of the benthic microbial communities reflect the legacy of sea ice dynamics. At Cape Evans, an enrichment of known heterotrophic algal polysaccharide degrading taxa (e.g., Flavobacteriaceae, unclassified Gammaproteobacteria, and Rubritaleaceae) and sulfate-reducing bacteria (e.g., Desulfocapsaceae) correlated with comparatively higher chlorophyll a (14.2±0.8μgg(−1)) and total organic carbon content (0.33%±0.04), reflecting increased productivity and seafloor deposition beneath FYI. Conversely, at New Harbour, an enrichment of known archaeal (e.g., Nitrosopumilaceae) and bacterial (e.g., Woeseiaceae and Nitrospiraceae) chemoautotrophs was common in sediments with considerably lower chlorophyll a (1.0±0.24μgg(−1)) and total organic carbon content (0.17%±0.01), reflecting restricted productivity beneath MYI. We also report evidence of a submarine discharge of sub-permafrost brine from Taylor Valley into New Harbour. By comparing our two study sites, we show that under current climate-warming scenarios, changes to sea ice productivity and seafloor deposition are likely to initiate major shifts in benthic microbial communities, with heterotrophic organic matter degradation processes becoming increasingly important. This study provides the first assessment of how legacy sea ice conditions influence benthic microbial communities in Antarctica, ...
format Text
author Currie, Ashleigh A.
Marshall, Alexis J.
Lohrer, Andrew M.
Cummings, Vonda J.
Seabrook, Sarah
Cary, S. Craig
author_facet Currie, Ashleigh A.
Marshall, Alexis J.
Lohrer, Andrew M.
Cummings, Vonda J.
Seabrook, Sarah
Cary, S. Craig
author_sort Currie, Ashleigh A.
title Sea Ice Dynamics Drive Benthic Microbial Communities in McMurdo Sound, Antarctica
title_short Sea Ice Dynamics Drive Benthic Microbial Communities in McMurdo Sound, Antarctica
title_full Sea Ice Dynamics Drive Benthic Microbial Communities in McMurdo Sound, Antarctica
title_fullStr Sea Ice Dynamics Drive Benthic Microbial Communities in McMurdo Sound, Antarctica
title_full_unstemmed Sea Ice Dynamics Drive Benthic Microbial Communities in McMurdo Sound, Antarctica
title_sort sea ice dynamics drive benthic microbial communities in mcmurdo sound, antarctica
publisher Frontiers Media S.A.
publishDate 2021
url http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8581541/
https://doi.org/10.3389/fmicb.2021.745915
long_lat ENVELOPE(161.550,161.550,-75.100,-75.100)
ENVELOPE(163.850,163.850,-77.600,-77.600)
ENVELOPE(163.000,163.000,-77.617,-77.617)
geographic Cape Evans
McMurdo Sound
New Harbour
Taylor Valley
geographic_facet Cape Evans
McMurdo Sound
New Harbour
Taylor Valley
genre Antarc*
Antarctica
Ice
McMurdo Sound
permafrost
Sea ice
genre_facet Antarc*
Antarctica
Ice
McMurdo Sound
permafrost
Sea ice
op_source Front Microbiol
op_relation http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8581541/
http://dx.doi.org/10.3389/fmicb.2021.745915
op_rights Copyright © 2021 Currie, Marshall, Lohrer, Cummings, Seabrook and Cary.
https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
op_rightsnorm CC-BY
op_doi https://doi.org/10.3389/fmicb.2021.745915
container_title Frontiers in Microbiology
container_volume 12
_version_ 1766041753114116096