Projected shifts in loggerhead sea turtle thermal habitat in the Northwest Atlantic Ocean due to climate change
It is well established that sea turtles are vulnerable to atmospheric and oceanographic shifts associated with climate change. However, few studies have formally projected how their seasonal marine habitat may shift in response to warming ocean temperatures. Here we used a high-resolution global cli...
Published in: | Scientific Reports |
---|---|
Main Authors: | , , , , , , |
Format: | Text |
Language: | English |
Published: |
Nature Publishing Group UK
2021
|
Subjects: | |
Online Access: | http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8065110/ http://www.ncbi.nlm.nih.gov/pubmed/33893380 https://doi.org/10.1038/s41598-021-88290-9 |
Summary: | It is well established that sea turtles are vulnerable to atmospheric and oceanographic shifts associated with climate change. However, few studies have formally projected how their seasonal marine habitat may shift in response to warming ocean temperatures. Here we used a high-resolution global climate model and a large satellite tagging dataset to project changes in the future distribution of suitable thermal habitat for loggerheads along the northeastern continental shelf of the United States. Between 2009 and 2018, we deployed 196 satellite tags on loggerheads within the Middle Atlantic Bight (MAB) of the Northwest Atlantic continental shelf region, a seasonal foraging area. Tag location data combined with depth and remotely sensed sea surface temperature (SST) were used to characterize the species’ current thermal range in the MAB. The best-fitting model indicated that the habitat envelope for tagged loggerheads consisted of SST ranging from 11.0° to 29.7 °C and depths between 0 and 105.0 m. The calculated core bathythermal range consisted of SSTs between 15.0° and 28.0 °C and depths between 8.0 and 92.0 m, with the highest probability of presence occurred in regions with SST between 17.7° and 25.3 °C and at depths between 26.1 and 74.2 m. This model was then forced by a high-resolution global climate model under a doubling of atmospheric CO(2) to project loggerhead probability of presence over the next 80 years. Our results suggest that loggerhead thermal habitat and seasonal duration will likely increase in northern regions of the NW Atlantic shelf. This change in spatiotemporal range for sea turtles in a region of high anthropogenic use may prompt adjustments to the localized protected species conservation measures. |
---|