A modern scleractinian coral with a two-component calcite–aragonite skeleton

One of the most conserved traits in the evolution of biomineralizing organisms is the taxon-specific selection of skeletal minerals. All modern scleractinian corals are thought to produce skeletons exclusively of the calcium-carbonate polymorph aragonite. Despite strong fluctuations in ocean chemist...

Full description

Bibliographic Details
Published in:Proceedings of the National Academy of Sciences
Main Authors: Stolarski, Jarosław, Coronado, Ismael, Murphy, Jack G., Kitahara, Marcelo V., Janiszewska, Katarzyna, Mazur, Maciej, Gothmann, Anne M., Bouvier, Anne-Sophie, Marin-Carbonne, Johanna, Taylor, Michelle L., Quattrini, Andrea M., McFadden, Catherine S., Higgins, John A., Robinson, Laura F., Meibom, Anders
Format: Text
Language:English
Published: National Academy of Sciences 2021
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826372/
http://www.ncbi.nlm.nih.gov/pubmed/33323482
https://doi.org/10.1073/pnas.2013316117
id ftpubmed:oai:pubmedcentral.nih.gov:7826372
record_format openpolar
spelling ftpubmed:oai:pubmedcentral.nih.gov:7826372 2023-05-15T13:47:52+02:00 A modern scleractinian coral with a two-component calcite–aragonite skeleton Stolarski, Jarosław Coronado, Ismael Murphy, Jack G. Kitahara, Marcelo V. Janiszewska, Katarzyna Mazur, Maciej Gothmann, Anne M. Bouvier, Anne-Sophie Marin-Carbonne, Johanna Taylor, Michelle L. Quattrini, Andrea M. McFadden, Catherine S. Higgins, John A. Robinson, Laura F. Meibom, Anders 2021-01-19 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826372/ http://www.ncbi.nlm.nih.gov/pubmed/33323482 https://doi.org/10.1073/pnas.2013316117 en eng National Academy of Sciences http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826372/ http://www.ncbi.nlm.nih.gov/pubmed/33323482 http://dx.doi.org/10.1073/pnas.2013316117 Copyright © 2021 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . CC-BY-NC-ND Proc Natl Acad Sci U S A Biological Sciences Text 2021 ftpubmed https://doi.org/10.1073/pnas.2013316117 2021-01-31T01:43:22Z One of the most conserved traits in the evolution of biomineralizing organisms is the taxon-specific selection of skeletal minerals. All modern scleractinian corals are thought to produce skeletons exclusively of the calcium-carbonate polymorph aragonite. Despite strong fluctuations in ocean chemistry (notably the Mg/Ca ratio), this feature is believed to be conserved throughout the coral fossil record, spanning more than 240 million years. Only one example, the Cretaceous scleractinian coral Coelosmilia (ca. 70 to 65 Ma), is thought to have produced a calcitic skeleton. Here, we report that the modern asymbiotic scleractinian coral Paraconotrochus antarcticus living in the Southern Ocean forms a two-component carbonate skeleton, with an inner structure made of high-Mg calcite and an outer structure composed of aragonite. P. antarcticus and Cretaceous Coelosmilia skeletons share a unique microstructure indicating a close phylogenetic relationship, consistent with the early divergence of P. antarcticus within the Vacatina (i.e., Robusta) clade, estimated to have occurred in the Mesozoic (ca. 116 Mya). Scleractinian corals thus join the group of marine organisms capable of forming bimineralic structures, which requires a highly controlled biomineralization mechanism; this capability dates back at least 100 My. Due to its relatively prolonged isolation, the Southern Ocean stands out as a repository for extant marine organisms with ancient traits. Text Antarc* antarcticus Southern Ocean PubMed Central (PMC) Southern Ocean Proceedings of the National Academy of Sciences 118 3 e2013316117
institution Open Polar
collection PubMed Central (PMC)
op_collection_id ftpubmed
language English
topic Biological Sciences
spellingShingle Biological Sciences
Stolarski, Jarosław
Coronado, Ismael
Murphy, Jack G.
Kitahara, Marcelo V.
Janiszewska, Katarzyna
Mazur, Maciej
Gothmann, Anne M.
Bouvier, Anne-Sophie
Marin-Carbonne, Johanna
Taylor, Michelle L.
Quattrini, Andrea M.
McFadden, Catherine S.
Higgins, John A.
Robinson, Laura F.
Meibom, Anders
A modern scleractinian coral with a two-component calcite–aragonite skeleton
topic_facet Biological Sciences
description One of the most conserved traits in the evolution of biomineralizing organisms is the taxon-specific selection of skeletal minerals. All modern scleractinian corals are thought to produce skeletons exclusively of the calcium-carbonate polymorph aragonite. Despite strong fluctuations in ocean chemistry (notably the Mg/Ca ratio), this feature is believed to be conserved throughout the coral fossil record, spanning more than 240 million years. Only one example, the Cretaceous scleractinian coral Coelosmilia (ca. 70 to 65 Ma), is thought to have produced a calcitic skeleton. Here, we report that the modern asymbiotic scleractinian coral Paraconotrochus antarcticus living in the Southern Ocean forms a two-component carbonate skeleton, with an inner structure made of high-Mg calcite and an outer structure composed of aragonite. P. antarcticus and Cretaceous Coelosmilia skeletons share a unique microstructure indicating a close phylogenetic relationship, consistent with the early divergence of P. antarcticus within the Vacatina (i.e., Robusta) clade, estimated to have occurred in the Mesozoic (ca. 116 Mya). Scleractinian corals thus join the group of marine organisms capable of forming bimineralic structures, which requires a highly controlled biomineralization mechanism; this capability dates back at least 100 My. Due to its relatively prolonged isolation, the Southern Ocean stands out as a repository for extant marine organisms with ancient traits.
format Text
author Stolarski, Jarosław
Coronado, Ismael
Murphy, Jack G.
Kitahara, Marcelo V.
Janiszewska, Katarzyna
Mazur, Maciej
Gothmann, Anne M.
Bouvier, Anne-Sophie
Marin-Carbonne, Johanna
Taylor, Michelle L.
Quattrini, Andrea M.
McFadden, Catherine S.
Higgins, John A.
Robinson, Laura F.
Meibom, Anders
author_facet Stolarski, Jarosław
Coronado, Ismael
Murphy, Jack G.
Kitahara, Marcelo V.
Janiszewska, Katarzyna
Mazur, Maciej
Gothmann, Anne M.
Bouvier, Anne-Sophie
Marin-Carbonne, Johanna
Taylor, Michelle L.
Quattrini, Andrea M.
McFadden, Catherine S.
Higgins, John A.
Robinson, Laura F.
Meibom, Anders
author_sort Stolarski, Jarosław
title A modern scleractinian coral with a two-component calcite–aragonite skeleton
title_short A modern scleractinian coral with a two-component calcite–aragonite skeleton
title_full A modern scleractinian coral with a two-component calcite–aragonite skeleton
title_fullStr A modern scleractinian coral with a two-component calcite–aragonite skeleton
title_full_unstemmed A modern scleractinian coral with a two-component calcite–aragonite skeleton
title_sort modern scleractinian coral with a two-component calcite–aragonite skeleton
publisher National Academy of Sciences
publishDate 2021
url http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826372/
http://www.ncbi.nlm.nih.gov/pubmed/33323482
https://doi.org/10.1073/pnas.2013316117
geographic Southern Ocean
geographic_facet Southern Ocean
genre Antarc*
antarcticus
Southern Ocean
genre_facet Antarc*
antarcticus
Southern Ocean
op_source Proc Natl Acad Sci U S A
op_relation http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826372/
http://www.ncbi.nlm.nih.gov/pubmed/33323482
http://dx.doi.org/10.1073/pnas.2013316117
op_rights Copyright © 2021 the Author(s). Published by PNAS.
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
op_rightsnorm CC-BY-NC-ND
op_doi https://doi.org/10.1073/pnas.2013316117
container_title Proceedings of the National Academy of Sciences
container_volume 118
container_issue 3
container_start_page e2013316117
_version_ 1766247961097928704