Biogeography of ocean acidification: Differential field performance of transplanted mussels to upwelling-driven variation in carbonate chemistry

Ocean acidification (OA) represents a serious challenge to marine ecosystems. Laboratory studies addressing OA indicate broadly negative effects for marine organisms, particularly those relying on calcification processes. Growing evidence also suggests OA combined with other environmental stressors...

Full description

Bibliographic Details
Published in:PLOS ONE
Main Authors: Rose, Jeremy M., Blanchette, Carol A., Chan, Francis, Gouhier, Tarik C., Raimondi, Peter T., Sanford, Eric, Menge, Bruce A.
Format: Text
Language:English
Published: Public Library of Science 2020
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367448/
http://www.ncbi.nlm.nih.gov/pubmed/32678823
https://doi.org/10.1371/journal.pone.0234075
id ftpubmed:oai:pubmedcentral.nih.gov:7367448
record_format openpolar
spelling ftpubmed:oai:pubmedcentral.nih.gov:7367448 2023-05-15T17:50:51+02:00 Biogeography of ocean acidification: Differential field performance of transplanted mussels to upwelling-driven variation in carbonate chemistry Rose, Jeremy M. Blanchette, Carol A. Chan, Francis Gouhier, Tarik C. Raimondi, Peter T. Sanford, Eric Menge, Bruce A. 2020-07-17 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367448/ http://www.ncbi.nlm.nih.gov/pubmed/32678823 https://doi.org/10.1371/journal.pone.0234075 en eng Public Library of Science http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367448/ http://www.ncbi.nlm.nih.gov/pubmed/32678823 http://dx.doi.org/10.1371/journal.pone.0234075 © 2020 Rose et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. CC-BY PLoS One Research Article Text 2020 ftpubmed https://doi.org/10.1371/journal.pone.0234075 2020-08-09T00:22:03Z Ocean acidification (OA) represents a serious challenge to marine ecosystems. Laboratory studies addressing OA indicate broadly negative effects for marine organisms, particularly those relying on calcification processes. Growing evidence also suggests OA combined with other environmental stressors may be even more deleterious. Scaling these laboratory studies to ecological performance in the field, where environmental heterogeneity may mediate responses, is a critical next step toward understanding OA impacts on natural communities. We leveraged an upwelling-driven pH mosaic along the California Current System to deconstruct the relative influences of pH, ocean temperature, and food availability on seasonal growth, condition and shell thickness of the ecologically dominant intertidal mussel Mytilus californianus. In 2011 and 2012, ecological performance of adult mussels from local and commonly sourced populations was measured at 8 rocky intertidal sites between central Oregon and southern California. Sites coincided with a large-scale network of intertidal pH sensors, allowing comparisons among pH and other environmental stressors. Adult California mussel growth and size varied latitudinally among sites and inter-annually, and mean shell thickness index and shell weight growth were reduced with low pH. Surprisingly, shell length growth and the ratio of tissue to shell weight were enhanced, not diminished as expected, by low pH. In contrast, and as expected, shell weight growth and shell thickness were both diminished by low pH, consistent with the idea that OA exposure can compromise shell-dependent defenses against predators or wave forces. We also found that adult mussel shell weight growth and relative tissue mass were negatively associated with increased pH variability. Including local pH conditions with previously documented influences of ocean temperature, food availability, aerial exposure, and origin site enhanced the explanatory power of models describing observed performance differences. Responses of ... Text Ocean acidification PubMed Central (PMC) PLOS ONE 15 7 e0234075
institution Open Polar
collection PubMed Central (PMC)
op_collection_id ftpubmed
language English
topic Research Article
spellingShingle Research Article
Rose, Jeremy M.
Blanchette, Carol A.
Chan, Francis
Gouhier, Tarik C.
Raimondi, Peter T.
Sanford, Eric
Menge, Bruce A.
Biogeography of ocean acidification: Differential field performance of transplanted mussels to upwelling-driven variation in carbonate chemistry
topic_facet Research Article
description Ocean acidification (OA) represents a serious challenge to marine ecosystems. Laboratory studies addressing OA indicate broadly negative effects for marine organisms, particularly those relying on calcification processes. Growing evidence also suggests OA combined with other environmental stressors may be even more deleterious. Scaling these laboratory studies to ecological performance in the field, where environmental heterogeneity may mediate responses, is a critical next step toward understanding OA impacts on natural communities. We leveraged an upwelling-driven pH mosaic along the California Current System to deconstruct the relative influences of pH, ocean temperature, and food availability on seasonal growth, condition and shell thickness of the ecologically dominant intertidal mussel Mytilus californianus. In 2011 and 2012, ecological performance of adult mussels from local and commonly sourced populations was measured at 8 rocky intertidal sites between central Oregon and southern California. Sites coincided with a large-scale network of intertidal pH sensors, allowing comparisons among pH and other environmental stressors. Adult California mussel growth and size varied latitudinally among sites and inter-annually, and mean shell thickness index and shell weight growth were reduced with low pH. Surprisingly, shell length growth and the ratio of tissue to shell weight were enhanced, not diminished as expected, by low pH. In contrast, and as expected, shell weight growth and shell thickness were both diminished by low pH, consistent with the idea that OA exposure can compromise shell-dependent defenses against predators or wave forces. We also found that adult mussel shell weight growth and relative tissue mass were negatively associated with increased pH variability. Including local pH conditions with previously documented influences of ocean temperature, food availability, aerial exposure, and origin site enhanced the explanatory power of models describing observed performance differences. Responses of ...
format Text
author Rose, Jeremy M.
Blanchette, Carol A.
Chan, Francis
Gouhier, Tarik C.
Raimondi, Peter T.
Sanford, Eric
Menge, Bruce A.
author_facet Rose, Jeremy M.
Blanchette, Carol A.
Chan, Francis
Gouhier, Tarik C.
Raimondi, Peter T.
Sanford, Eric
Menge, Bruce A.
author_sort Rose, Jeremy M.
title Biogeography of ocean acidification: Differential field performance of transplanted mussels to upwelling-driven variation in carbonate chemistry
title_short Biogeography of ocean acidification: Differential field performance of transplanted mussels to upwelling-driven variation in carbonate chemistry
title_full Biogeography of ocean acidification: Differential field performance of transplanted mussels to upwelling-driven variation in carbonate chemistry
title_fullStr Biogeography of ocean acidification: Differential field performance of transplanted mussels to upwelling-driven variation in carbonate chemistry
title_full_unstemmed Biogeography of ocean acidification: Differential field performance of transplanted mussels to upwelling-driven variation in carbonate chemistry
title_sort biogeography of ocean acidification: differential field performance of transplanted mussels to upwelling-driven variation in carbonate chemistry
publisher Public Library of Science
publishDate 2020
url http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367448/
http://www.ncbi.nlm.nih.gov/pubmed/32678823
https://doi.org/10.1371/journal.pone.0234075
genre Ocean acidification
genre_facet Ocean acidification
op_source PLoS One
op_relation http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367448/
http://www.ncbi.nlm.nih.gov/pubmed/32678823
http://dx.doi.org/10.1371/journal.pone.0234075
op_rights © 2020 Rose et al
http://creativecommons.org/licenses/by/4.0/
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
op_rightsnorm CC-BY
op_doi https://doi.org/10.1371/journal.pone.0234075
container_title PLOS ONE
container_volume 15
container_issue 7
container_start_page e0234075
_version_ 1766157775973384192