BSCI-14. SYNTHETIC METASTATIC BRAIN DISEASE MRI IMAGES CREATED USING A GENERATIVE ADVERSARY NETWORK TO OVERCOME DEEP MACHINE LEARNING CHALLENGES IN HEALTHCARE

Deep Machine Learning (DML) in commercial applications such as recognizing animal species in photographs occurred through analyzing large volumes of public data. To achieve similar success in brain tumor imaging, additional factors must be addressed such as the need to follow strict regulatory proto...

Full description

Bibliographic Details
Published in:Neuro-Oncology Advances
Main Authors: Dai, Zhenzhen, Snyder, James, Wen, Ning
Format: Text
Language:English
Published: Oxford University Press 2019
Subjects:
DML
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7213370/
https://doi.org/10.1093/noajnl/vdz014.012
id ftpubmed:oai:pubmedcentral.nih.gov:7213370
record_format openpolar
spelling ftpubmed:oai:pubmedcentral.nih.gov:7213370 2023-05-15T16:01:31+02:00 BSCI-14. SYNTHETIC METASTATIC BRAIN DISEASE MRI IMAGES CREATED USING A GENERATIVE ADVERSARY NETWORK TO OVERCOME DEEP MACHINE LEARNING CHALLENGES IN HEALTHCARE Dai, Zhenzhen Snyder, James Wen, Ning 2019-08-12 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7213370/ https://doi.org/10.1093/noajnl/vdz014.012 en eng Oxford University Press http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7213370/ http://dx.doi.org/10.1093/noajnl/vdz014.012 © The Author(s) 2019. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of Neuro-Oncology. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com CC-BY-NC Neurooncol Adv Abstracts Text 2019 ftpubmed https://doi.org/10.1093/noajnl/vdz014.012 2020-07-12T00:17:44Z Deep Machine Learning (DML) in commercial applications such as recognizing animal species in photographs occurred through analyzing large volumes of public data. To achieve similar success in brain tumor imaging, additional factors must be addressed such as the need to follow strict regulatory protocols, work with limited datasets, and protect patient privacy. Generative adversary network (GAN) restricted to intracranial disease is one possibility to overcome these challenges and enable training on small annotated datasets to synthesize new samples. Large fabricated brain metastases (BM) training datasets derived from patient MRI using GAN models may enable DML of BM MRI studies. METHOD: We randomly selected 82 glioma patient imaging studies from the MICCAI BraTS 2018 Challenge(1). All patients underwent contouring of GD-enhancing tumor (C+), peritumoral T2 (pT2), necrotic and non-enhancing tumor core (NCR/NET). Images are co-registered to the anatomical template and skull-stripped. Our network consists of a GAN and a discriminative network. The generative model works to synthesize images from labels. Labels comprise the normal brain mask as well as the contoured C+, pT2 and NCR/NET. Normal brain mask is extracted from threshold segmentation on T2-weighted image (T2WI). A discriminative network compares the difference between synthetic and real patient image in both pixel and perceptual difference. The generative model is trained to minimize the difference from the discriminative network. This method was refined in the glioblastoma dataset and applied to BM MRI. RESULTS: Figure 1. Synthetic BM MRI images derived from human brain MRI studies using the GAN model with four modalities (T2, T2 FLAIR, T1 contrasted image, and T1 non-contrasted Image). CONCLUSION: Training DML in BM disease using GAN MRI models may overcome limitations in applying DML to healthcare, namely volume of high-quality data and patient privacy. GAN based modeling for BM needs to be further refined and validated. Text DML PubMed Central (PMC) Neuro-Oncology Advances 1 Supplement_1 i3 i4
institution Open Polar
collection PubMed Central (PMC)
op_collection_id ftpubmed
language English
topic Abstracts
spellingShingle Abstracts
Dai, Zhenzhen
Snyder, James
Wen, Ning
BSCI-14. SYNTHETIC METASTATIC BRAIN DISEASE MRI IMAGES CREATED USING A GENERATIVE ADVERSARY NETWORK TO OVERCOME DEEP MACHINE LEARNING CHALLENGES IN HEALTHCARE
topic_facet Abstracts
description Deep Machine Learning (DML) in commercial applications such as recognizing animal species in photographs occurred through analyzing large volumes of public data. To achieve similar success in brain tumor imaging, additional factors must be addressed such as the need to follow strict regulatory protocols, work with limited datasets, and protect patient privacy. Generative adversary network (GAN) restricted to intracranial disease is one possibility to overcome these challenges and enable training on small annotated datasets to synthesize new samples. Large fabricated brain metastases (BM) training datasets derived from patient MRI using GAN models may enable DML of BM MRI studies. METHOD: We randomly selected 82 glioma patient imaging studies from the MICCAI BraTS 2018 Challenge(1). All patients underwent contouring of GD-enhancing tumor (C+), peritumoral T2 (pT2), necrotic and non-enhancing tumor core (NCR/NET). Images are co-registered to the anatomical template and skull-stripped. Our network consists of a GAN and a discriminative network. The generative model works to synthesize images from labels. Labels comprise the normal brain mask as well as the contoured C+, pT2 and NCR/NET. Normal brain mask is extracted from threshold segmentation on T2-weighted image (T2WI). A discriminative network compares the difference between synthetic and real patient image in both pixel and perceptual difference. The generative model is trained to minimize the difference from the discriminative network. This method was refined in the glioblastoma dataset and applied to BM MRI. RESULTS: Figure 1. Synthetic BM MRI images derived from human brain MRI studies using the GAN model with four modalities (T2, T2 FLAIR, T1 contrasted image, and T1 non-contrasted Image). CONCLUSION: Training DML in BM disease using GAN MRI models may overcome limitations in applying DML to healthcare, namely volume of high-quality data and patient privacy. GAN based modeling for BM needs to be further refined and validated.
format Text
author Dai, Zhenzhen
Snyder, James
Wen, Ning
author_facet Dai, Zhenzhen
Snyder, James
Wen, Ning
author_sort Dai, Zhenzhen
title BSCI-14. SYNTHETIC METASTATIC BRAIN DISEASE MRI IMAGES CREATED USING A GENERATIVE ADVERSARY NETWORK TO OVERCOME DEEP MACHINE LEARNING CHALLENGES IN HEALTHCARE
title_short BSCI-14. SYNTHETIC METASTATIC BRAIN DISEASE MRI IMAGES CREATED USING A GENERATIVE ADVERSARY NETWORK TO OVERCOME DEEP MACHINE LEARNING CHALLENGES IN HEALTHCARE
title_full BSCI-14. SYNTHETIC METASTATIC BRAIN DISEASE MRI IMAGES CREATED USING A GENERATIVE ADVERSARY NETWORK TO OVERCOME DEEP MACHINE LEARNING CHALLENGES IN HEALTHCARE
title_fullStr BSCI-14. SYNTHETIC METASTATIC BRAIN DISEASE MRI IMAGES CREATED USING A GENERATIVE ADVERSARY NETWORK TO OVERCOME DEEP MACHINE LEARNING CHALLENGES IN HEALTHCARE
title_full_unstemmed BSCI-14. SYNTHETIC METASTATIC BRAIN DISEASE MRI IMAGES CREATED USING A GENERATIVE ADVERSARY NETWORK TO OVERCOME DEEP MACHINE LEARNING CHALLENGES IN HEALTHCARE
title_sort bsci-14. synthetic metastatic brain disease mri images created using a generative adversary network to overcome deep machine learning challenges in healthcare
publisher Oxford University Press
publishDate 2019
url http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7213370/
https://doi.org/10.1093/noajnl/vdz014.012
genre DML
genre_facet DML
op_source Neurooncol Adv
op_relation http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7213370/
http://dx.doi.org/10.1093/noajnl/vdz014.012
op_rights © The Author(s) 2019. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of Neuro-Oncology.
http://creativecommons.org/licenses/by-nc/4.0/
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
op_rightsnorm CC-BY-NC
op_doi https://doi.org/10.1093/noajnl/vdz014.012
container_title Neuro-Oncology Advances
container_volume 1
container_issue Supplement_1
container_start_page i3
op_container_end_page i4
_version_ 1766397333748056064