Killer whale presence drives bowhead whale selection for sea ice in Arctic seascapes of fear
The effects of predator intimidation on habitat use and behavior of prey species are rarely quantified for large marine vertebrates over ecologically relevant scales. Using state space movement models followed by a series of step selection functions, we analyzed movement data of concurrently tracked...
Published in: | Proceedings of the National Academy of Sciences |
---|---|
Main Authors: | , , , |
Format: | Text |
Language: | English |
Published: |
National Academy of Sciences
2020
|
Subjects: | |
Online Access: | http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7104343/ http://www.ncbi.nlm.nih.gov/pubmed/32152110 https://doi.org/10.1073/pnas.1911761117 |
Summary: | The effects of predator intimidation on habitat use and behavior of prey species are rarely quantified for large marine vertebrates over ecologically relevant scales. Using state space movement models followed by a series of step selection functions, we analyzed movement data of concurrently tracked prey, bowhead whales (Balaena mysticetus; n = 7), and predator, killer whales (Orcinus orca; n = 3), in a large (63,000 km(2)), partially ice-covered gulf in the Canadian Arctic. Our analysis revealed pronounced predator-mediated shifts in prey habitat use and behavior over much larger spatiotemporal scales than previously documented in any marine or terrestrial ecosystem. The striking shift from use of open water (predator-free) to dense sea ice and shorelines (predators present) was exhibited gulf-wide by all tracked bowheads during the entire 3-wk period killer whales were present, constituting a nonconsumptive effect (NCE) with unknown energetic or fitness costs. Sea ice is considered quintessential habitat for bowhead whales, and ice-covered areas have frequently been interpreted as preferred bowhead foraging habitat in analyses that have not assessed predator effects. Given the NCEs of apex predators demonstrated here, however, unbiased assessment of habitat use and distribution of bowhead whales and many marine species may not be possible without explicitly incorporating spatiotemporal distribution of predation risk. The apparent use of sea ice as a predator refuge also has implications for how bowhead whales, and likely other ice-associated Arctic marine mammals, will cope with changes in Arctic sea ice dynamics as historically ice-covered areas become increasingly ice-free during summer. |
---|