Subglacial meltwater supported aerobic marine habitats during Snowball Earth

The Earth’s most severe ice ages interrupted a crucial interval in eukaryotic evolution with widespread ice coverage during the Cryogenian Period (720 to 635 Ma). Aerobic eukaryotes must have survived the “Snowball Earth” glaciations, requiring the persistence of oxygenated marine habitats, yet evid...

Full description

Bibliographic Details
Published in:Proceedings of the National Academy of Sciences
Main Authors: Lechte, Maxwell A., Wallace, Malcolm W., Hood, Ashleigh van Smeerdijk, Li, Weiqiang, Jiang, Ganqing, Halverson, Galen P., Asael, Dan, McColl, Stephanie L., Planavsky, Noah J.
Format: Text
Language:English
Published: National Academy of Sciences 2019
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6926012/
http://www.ncbi.nlm.nih.gov/pubmed/31792178
https://doi.org/10.1073/pnas.1909165116
id ftpubmed:oai:pubmedcentral.nih.gov:6926012
record_format openpolar
spelling ftpubmed:oai:pubmedcentral.nih.gov:6926012 2023-05-15T16:41:54+02:00 Subglacial meltwater supported aerobic marine habitats during Snowball Earth Lechte, Maxwell A. Wallace, Malcolm W. Hood, Ashleigh van Smeerdijk Li, Weiqiang Jiang, Ganqing Halverson, Galen P. Asael, Dan McColl, Stephanie L. Planavsky, Noah J. 2019-12-17 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6926012/ http://www.ncbi.nlm.nih.gov/pubmed/31792178 https://doi.org/10.1073/pnas.1909165116 en eng National Academy of Sciences http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6926012/ http://www.ncbi.nlm.nih.gov/pubmed/31792178 http://dx.doi.org/10.1073/pnas.1909165116 https://www.pnas.org/site/aboutpnas/licenses.xhtmlPublished under the PNAS license (https://www.pnas.org/site/aboutpnas/licenses.xhtml) . Proc Natl Acad Sci U S A Physical Sciences Text 2019 ftpubmed https://doi.org/10.1073/pnas.1909165116 2020-06-07T00:28:28Z The Earth’s most severe ice ages interrupted a crucial interval in eukaryotic evolution with widespread ice coverage during the Cryogenian Period (720 to 635 Ma). Aerobic eukaryotes must have survived the “Snowball Earth” glaciations, requiring the persistence of oxygenated marine habitats, yet evidence for these environments is lacking. We examine iron formations within globally distributed Cryogenian glacial successions to reconstruct the redox state of the synglacial oceans. Iron isotope ratios and cerium anomalies from a range of glaciomarine environments reveal pervasive anoxia in the ice-covered oceans but increasing oxidation with proximity to the ice shelf grounding line. We propose that the outwash of subglacial meltwater supplied oxygen to the synglacial oceans, creating glaciomarine oxygen oases. The confluence of oxygen-rich meltwater and iron-rich seawater may have provided sufficient energy to sustain chemosynthetic communities. These processes could have supplied the requisite oxygen and organic carbon source for the survival of early animals and other eukaryotic heterotrophs through these extreme glaciations. Text Ice Shelf PubMed Central (PMC) Proceedings of the National Academy of Sciences 116 51 25478 25483
institution Open Polar
collection PubMed Central (PMC)
op_collection_id ftpubmed
language English
topic Physical Sciences
spellingShingle Physical Sciences
Lechte, Maxwell A.
Wallace, Malcolm W.
Hood, Ashleigh van Smeerdijk
Li, Weiqiang
Jiang, Ganqing
Halverson, Galen P.
Asael, Dan
McColl, Stephanie L.
Planavsky, Noah J.
Subglacial meltwater supported aerobic marine habitats during Snowball Earth
topic_facet Physical Sciences
description The Earth’s most severe ice ages interrupted a crucial interval in eukaryotic evolution with widespread ice coverage during the Cryogenian Period (720 to 635 Ma). Aerobic eukaryotes must have survived the “Snowball Earth” glaciations, requiring the persistence of oxygenated marine habitats, yet evidence for these environments is lacking. We examine iron formations within globally distributed Cryogenian glacial successions to reconstruct the redox state of the synglacial oceans. Iron isotope ratios and cerium anomalies from a range of glaciomarine environments reveal pervasive anoxia in the ice-covered oceans but increasing oxidation with proximity to the ice shelf grounding line. We propose that the outwash of subglacial meltwater supplied oxygen to the synglacial oceans, creating glaciomarine oxygen oases. The confluence of oxygen-rich meltwater and iron-rich seawater may have provided sufficient energy to sustain chemosynthetic communities. These processes could have supplied the requisite oxygen and organic carbon source for the survival of early animals and other eukaryotic heterotrophs through these extreme glaciations.
format Text
author Lechte, Maxwell A.
Wallace, Malcolm W.
Hood, Ashleigh van Smeerdijk
Li, Weiqiang
Jiang, Ganqing
Halverson, Galen P.
Asael, Dan
McColl, Stephanie L.
Planavsky, Noah J.
author_facet Lechte, Maxwell A.
Wallace, Malcolm W.
Hood, Ashleigh van Smeerdijk
Li, Weiqiang
Jiang, Ganqing
Halverson, Galen P.
Asael, Dan
McColl, Stephanie L.
Planavsky, Noah J.
author_sort Lechte, Maxwell A.
title Subglacial meltwater supported aerobic marine habitats during Snowball Earth
title_short Subglacial meltwater supported aerobic marine habitats during Snowball Earth
title_full Subglacial meltwater supported aerobic marine habitats during Snowball Earth
title_fullStr Subglacial meltwater supported aerobic marine habitats during Snowball Earth
title_full_unstemmed Subglacial meltwater supported aerobic marine habitats during Snowball Earth
title_sort subglacial meltwater supported aerobic marine habitats during snowball earth
publisher National Academy of Sciences
publishDate 2019
url http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6926012/
http://www.ncbi.nlm.nih.gov/pubmed/31792178
https://doi.org/10.1073/pnas.1909165116
genre Ice Shelf
genre_facet Ice Shelf
op_source Proc Natl Acad Sci U S A
op_relation http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6926012/
http://www.ncbi.nlm.nih.gov/pubmed/31792178
http://dx.doi.org/10.1073/pnas.1909165116
op_rights https://www.pnas.org/site/aboutpnas/licenses.xhtmlPublished under the PNAS license (https://www.pnas.org/site/aboutpnas/licenses.xhtml) .
op_doi https://doi.org/10.1073/pnas.1909165116
container_title Proceedings of the National Academy of Sciences
container_volume 116
container_issue 51
container_start_page 25478
op_container_end_page 25483
_version_ 1766032368350527488