The apricot (Prunus armeniaca L.) genome elucidates Rosaceae evolution and beta-carotenoid synthesis

Apricots, scientifically known as Prunus armeniaca L, are drupes that resemble and are closely related to peaches or plums. As one of the top consumed fruits, apricots are widely grown worldwide except in Antarctica. A high-quality reference genome for apricot is still unavailable, which has become...

Full description

Bibliographic Details
Published in:Horticulture Research
Main Authors: Jiang, Fengchao, Zhang, Junhuan, Wang, Sen, Yang, Li, Luo, Yingfeng, Gao, Shenghan, Zhang, Meiling, Wu, Shuangyang, Hu, Songnian, Sun, Haoyuan, Wang, Yuzhu
Format: Text
Language:English
Published: Nature Publishing Group UK 2019
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6861294/
https://doi.org/10.1038/s41438-019-0215-6
id ftpubmed:oai:pubmedcentral.nih.gov:6861294
record_format openpolar
spelling ftpubmed:oai:pubmedcentral.nih.gov:6861294 2023-05-15T13:55:11+02:00 The apricot (Prunus armeniaca L.) genome elucidates Rosaceae evolution and beta-carotenoid synthesis Jiang, Fengchao Zhang, Junhuan Wang, Sen Yang, Li Luo, Yingfeng Gao, Shenghan Zhang, Meiling Wu, Shuangyang Hu, Songnian Sun, Haoyuan Wang, Yuzhu 2019-11-18 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6861294/ https://doi.org/10.1038/s41438-019-0215-6 en eng Nature Publishing Group UK http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6861294/ http://dx.doi.org/10.1038/s41438-019-0215-6 © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. CC-BY Article Text 2019 ftpubmed https://doi.org/10.1038/s41438-019-0215-6 2019-11-24T01:43:12Z Apricots, scientifically known as Prunus armeniaca L, are drupes that resemble and are closely related to peaches or plums. As one of the top consumed fruits, apricots are widely grown worldwide except in Antarctica. A high-quality reference genome for apricot is still unavailable, which has become a handicap that has dramatically limited the elucidation of the associations of phenotypes with the genetic background, evolutionary diversity, and population diversity in apricot. DNA from P. armeniaca was used to generate a standard, size-selected library with an average DNA fragment size of ~20 kb. The library was run on Sequel SMRT Cells, generating a total of 16.54 Gb of PacBio subreads (N50 = 13.55 kb). The high-quality P. armeniaca reference genome presented here was assembled using long-read single-molecule sequencing at approximately 70× coverage and 171× Illumina reads (40.46 Gb), combined with a genetic map for chromosome scaffolding. The assembled genome size was 221.9 Mb, with a contig NG50 size of 1.02 Mb. Scaffolds covering 92.88% of the assembled genome were anchored on eight chromosomes. Benchmarking Universal Single-Copy Orthologs analysis showed 98.0% complete genes. We predicted 30,436 protein-coding genes, and 38.28% of the genome was predicted to be repetitive. We found 981 contracted gene families, 1324 expanded gene families and 2300 apricot-specific genes. The differentially expressed gene (DEG) analysis indicated that a change in the expression of the 9-cis-epoxycarotenoid dioxygenase (NCED) gene but not lycopene beta-cyclase (LcyB) gene results in a low β-carotenoid content in the white cultivar “Dabaixing”. This complete and highly contiguous P. armeniaca reference genome will be of help for future studies of resistance to plum pox virus (PPV) and the identification and characterization of important agronomic genes and breeding strategies in apricot. Text Antarc* Antarctica PubMed Central (PMC) Horticulture Research 6 1
institution Open Polar
collection PubMed Central (PMC)
op_collection_id ftpubmed
language English
topic Article
spellingShingle Article
Jiang, Fengchao
Zhang, Junhuan
Wang, Sen
Yang, Li
Luo, Yingfeng
Gao, Shenghan
Zhang, Meiling
Wu, Shuangyang
Hu, Songnian
Sun, Haoyuan
Wang, Yuzhu
The apricot (Prunus armeniaca L.) genome elucidates Rosaceae evolution and beta-carotenoid synthesis
topic_facet Article
description Apricots, scientifically known as Prunus armeniaca L, are drupes that resemble and are closely related to peaches or plums. As one of the top consumed fruits, apricots are widely grown worldwide except in Antarctica. A high-quality reference genome for apricot is still unavailable, which has become a handicap that has dramatically limited the elucidation of the associations of phenotypes with the genetic background, evolutionary diversity, and population diversity in apricot. DNA from P. armeniaca was used to generate a standard, size-selected library with an average DNA fragment size of ~20 kb. The library was run on Sequel SMRT Cells, generating a total of 16.54 Gb of PacBio subreads (N50 = 13.55 kb). The high-quality P. armeniaca reference genome presented here was assembled using long-read single-molecule sequencing at approximately 70× coverage and 171× Illumina reads (40.46 Gb), combined with a genetic map for chromosome scaffolding. The assembled genome size was 221.9 Mb, with a contig NG50 size of 1.02 Mb. Scaffolds covering 92.88% of the assembled genome were anchored on eight chromosomes. Benchmarking Universal Single-Copy Orthologs analysis showed 98.0% complete genes. We predicted 30,436 protein-coding genes, and 38.28% of the genome was predicted to be repetitive. We found 981 contracted gene families, 1324 expanded gene families and 2300 apricot-specific genes. The differentially expressed gene (DEG) analysis indicated that a change in the expression of the 9-cis-epoxycarotenoid dioxygenase (NCED) gene but not lycopene beta-cyclase (LcyB) gene results in a low β-carotenoid content in the white cultivar “Dabaixing”. This complete and highly contiguous P. armeniaca reference genome will be of help for future studies of resistance to plum pox virus (PPV) and the identification and characterization of important agronomic genes and breeding strategies in apricot.
format Text
author Jiang, Fengchao
Zhang, Junhuan
Wang, Sen
Yang, Li
Luo, Yingfeng
Gao, Shenghan
Zhang, Meiling
Wu, Shuangyang
Hu, Songnian
Sun, Haoyuan
Wang, Yuzhu
author_facet Jiang, Fengchao
Zhang, Junhuan
Wang, Sen
Yang, Li
Luo, Yingfeng
Gao, Shenghan
Zhang, Meiling
Wu, Shuangyang
Hu, Songnian
Sun, Haoyuan
Wang, Yuzhu
author_sort Jiang, Fengchao
title The apricot (Prunus armeniaca L.) genome elucidates Rosaceae evolution and beta-carotenoid synthesis
title_short The apricot (Prunus armeniaca L.) genome elucidates Rosaceae evolution and beta-carotenoid synthesis
title_full The apricot (Prunus armeniaca L.) genome elucidates Rosaceae evolution and beta-carotenoid synthesis
title_fullStr The apricot (Prunus armeniaca L.) genome elucidates Rosaceae evolution and beta-carotenoid synthesis
title_full_unstemmed The apricot (Prunus armeniaca L.) genome elucidates Rosaceae evolution and beta-carotenoid synthesis
title_sort apricot (prunus armeniaca l.) genome elucidates rosaceae evolution and beta-carotenoid synthesis
publisher Nature Publishing Group UK
publishDate 2019
url http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6861294/
https://doi.org/10.1038/s41438-019-0215-6
genre Antarc*
Antarctica
genre_facet Antarc*
Antarctica
op_relation http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6861294/
http://dx.doi.org/10.1038/s41438-019-0215-6
op_rights © The Author(s) 2019
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
op_rightsnorm CC-BY
op_doi https://doi.org/10.1038/s41438-019-0215-6
container_title Horticulture Research
container_volume 6
container_issue 1
_version_ 1766261458845302784