Unbiased atomistic insight in the competing nucleation mechanisms of methane hydrates

Methane hydrates have important industrial and climate implications, yet their formation via homogeneous nucleation under natural, moderate conditions is poorly understood. Obtaining such understanding could lead to improved control of crystallization, as well as insight into polymorph selection in...

Full description

Bibliographic Details
Published in:Proceedings of the National Academy of Sciences
Main Authors: Arjun, Berendsen, Thom A., Bolhuis, Peter G.
Format: Text
Language:English
Published: National Academy of Sciences 2019
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6765301/
http://www.ncbi.nlm.nih.gov/pubmed/31501333
https://doi.org/10.1073/pnas.1906502116
Description
Summary:Methane hydrates have important industrial and climate implications, yet their formation via homogeneous nucleation under natural, moderate conditions is poorly understood. Obtaining such understanding could lead to improved control of crystallization, as well as insight into polymorph selection in general, but is hampered by limited experimental resolution. Direct molecular dynamics simulations using atomistic force fields could provide such insight, but are not feasible for moderate undercooling, due to the rare event nature of nucleation. Instead, we harvest ensembles of the rare unbiased nucleation trajectories by employing transition path sampling. We find that with decreasing undercooling the mechanism shifts from amorphous to crystalline polymorph formation. At intermediate temperature the 2 mechanisms compete. Reaction coordinate analysis reveals the amount of a specific methane cage type is crucial for crystallization, while irrelevant for amorphous solids. Polymorph selection is thus governed by kinetic accessibility of the correct cage type and, moreover, occurs at precritical nucleus sizes, apparently against Ostwald’s step rule. We argue that these results are still in line with classical nucleation theory. Our findings illuminate how selection between competing methane hydrate polymorphs occurs and might generalize to other hydrates and molecular crystal formation.