Genetic dissection of cell wall defects and the strigolactone pathway in Arabidopsis

Defects in the biosynthesis and/or deposition of secondary plant cell wall polymers result in the collapse of xylem vessels causing a dwarfed plant stature and an altered plant architecture termed irregular xylem (irx) syndrome. For example, reduced xylan O‐acetylation causes strong developmental de...

Full description

Bibliographic Details
Published in:Plant Direct
Main Authors: Ramírez, Vicente, Pauly, Markus
Format: Text
Language:English
Published: John Wiley and Sons Inc. 2019
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589044/
https://doi.org/10.1002/pld3.149
id ftpubmed:oai:pubmedcentral.nih.gov:6589044
record_format openpolar
spelling ftpubmed:oai:pubmedcentral.nih.gov:6589044 2023-05-15T16:06:34+02:00 Genetic dissection of cell wall defects and the strigolactone pathway in Arabidopsis Ramírez, Vicente Pauly, Markus 2019-06-22 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589044/ https://doi.org/10.1002/pld3.149 en eng John Wiley and Sons Inc. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589044/ http://dx.doi.org/10.1002/pld3.149 © 2019 The Authors. Plant Direct published by American Society of Plant Biologists, Society for Experimental Biology and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. CC-BY Original Research Text 2019 ftpubmed https://doi.org/10.1002/pld3.149 2019-06-30T01:08:18Z Defects in the biosynthesis and/or deposition of secondary plant cell wall polymers result in the collapse of xylem vessels causing a dwarfed plant stature and an altered plant architecture termed irregular xylem (irx) syndrome. For example, reduced xylan O‐acetylation causes strong developmental defects and increased freezing tolerance. Recently, we demonstrated that the irx syndrome in the trichome birefringence‐like 29/eskimo1 (tbl29/esk1) mutant is dependent on MORE AXILLARY GROWTH 4 (MAX4), a key enzyme in the biosynthesis of the phytohormone strigolactone (SL). In this report, we show that other xylan‐ and cellulose‐deficient secondary wall mutants exhibit increased freezing tolerance correlated with the irx syndrome. In addition, these phenotypes are also dependent on MAX4, suggesting a more general interaction between secondary wall defects and SL biosynthesis. In contrast, MAX4 does not play a role in developmental defects triggered by primary wall deficiencies, suggesting that the interaction is restricted to vascular tissue. Through a reverse genetics approach, the requirement of different components of the SL pathway impacting the irx syndrome in tbl29 was evaluated. Our results show that the tbl29‐associated irx phenotypes are dependent on the MAX3 and MAX4 enzymes, involved in the early steps of SL biosynthesis. In contrast, this signaling is independent on downstream enzymes in the biosynthesis and perception of SL such as MAX1 and MAX2. Text eskimo* PubMed Central (PMC) Plant Direct 3 6
institution Open Polar
collection PubMed Central (PMC)
op_collection_id ftpubmed
language English
topic Original Research
spellingShingle Original Research
Ramírez, Vicente
Pauly, Markus
Genetic dissection of cell wall defects and the strigolactone pathway in Arabidopsis
topic_facet Original Research
description Defects in the biosynthesis and/or deposition of secondary plant cell wall polymers result in the collapse of xylem vessels causing a dwarfed plant stature and an altered plant architecture termed irregular xylem (irx) syndrome. For example, reduced xylan O‐acetylation causes strong developmental defects and increased freezing tolerance. Recently, we demonstrated that the irx syndrome in the trichome birefringence‐like 29/eskimo1 (tbl29/esk1) mutant is dependent on MORE AXILLARY GROWTH 4 (MAX4), a key enzyme in the biosynthesis of the phytohormone strigolactone (SL). In this report, we show that other xylan‐ and cellulose‐deficient secondary wall mutants exhibit increased freezing tolerance correlated with the irx syndrome. In addition, these phenotypes are also dependent on MAX4, suggesting a more general interaction between secondary wall defects and SL biosynthesis. In contrast, MAX4 does not play a role in developmental defects triggered by primary wall deficiencies, suggesting that the interaction is restricted to vascular tissue. Through a reverse genetics approach, the requirement of different components of the SL pathway impacting the irx syndrome in tbl29 was evaluated. Our results show that the tbl29‐associated irx phenotypes are dependent on the MAX3 and MAX4 enzymes, involved in the early steps of SL biosynthesis. In contrast, this signaling is independent on downstream enzymes in the biosynthesis and perception of SL such as MAX1 and MAX2.
format Text
author Ramírez, Vicente
Pauly, Markus
author_facet Ramírez, Vicente
Pauly, Markus
author_sort Ramírez, Vicente
title Genetic dissection of cell wall defects and the strigolactone pathway in Arabidopsis
title_short Genetic dissection of cell wall defects and the strigolactone pathway in Arabidopsis
title_full Genetic dissection of cell wall defects and the strigolactone pathway in Arabidopsis
title_fullStr Genetic dissection of cell wall defects and the strigolactone pathway in Arabidopsis
title_full_unstemmed Genetic dissection of cell wall defects and the strigolactone pathway in Arabidopsis
title_sort genetic dissection of cell wall defects and the strigolactone pathway in arabidopsis
publisher John Wiley and Sons Inc.
publishDate 2019
url http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589044/
https://doi.org/10.1002/pld3.149
genre eskimo*
genre_facet eskimo*
op_relation http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589044/
http://dx.doi.org/10.1002/pld3.149
op_rights © 2019 The Authors. Plant Direct published by American Society of Plant Biologists, Society for Experimental Biology and John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
op_rightsnorm CC-BY
op_doi https://doi.org/10.1002/pld3.149
container_title Plant Direct
container_volume 3
container_issue 6
_version_ 1766402526174773248