Contrasting changes in space use induced by climate change in two Arctic marine mammal species
Global warming is inducing major environmental changes in the Arctic. These changes will differentially affect species owing to differences in climate sensitivity and behavioural plasticity. Arctic endemic marine mammals are expected to be impacted significantly by ongoing changes in their key habit...
Published in: | Biology Letters |
---|---|
Main Authors: | , , , , , |
Format: | Text |
Language: | English |
Published: |
The Royal Society
2019
|
Subjects: | |
Online Access: | http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6451376/ http://www.ncbi.nlm.nih.gov/pubmed/30836888 https://doi.org/10.1098/rsbl.2018.0834 |
id |
ftpubmed:oai:pubmedcentral.nih.gov:6451376 |
---|---|
record_format |
openpolar |
spelling |
ftpubmed:oai:pubmedcentral.nih.gov:6451376 2023-05-15T14:42:00+02:00 Contrasting changes in space use induced by climate change in two Arctic marine mammal species Hamilton, Charmain D. Vacquié-Garcia, Jade Kovacs, Kit M. Ims, Rolf A. Kohler, Jack Lydersen, Christian 2019-03 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6451376/ http://www.ncbi.nlm.nih.gov/pubmed/30836888 https://doi.org/10.1098/rsbl.2018.0834 en eng The Royal Society http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6451376/ http://www.ncbi.nlm.nih.gov/pubmed/30836888 http://dx.doi.org/10.1098/rsbl.2018.0834 © 2019 The Author(s) http://royalsocietypublishing.org/licence Published by the Royal Society. All rights reserved. Global Change Biology Text 2019 ftpubmed https://doi.org/10.1098/rsbl.2018.0834 2020-03-08T01:23:42Z Global warming is inducing major environmental changes in the Arctic. These changes will differentially affect species owing to differences in climate sensitivity and behavioural plasticity. Arctic endemic marine mammals are expected to be impacted significantly by ongoing changes in their key habitats owing to their long life cycles and dependence on ice. Herein, unique biotelemetry datasets for ringed seals (RS; Pusa hispida) and white whales (WW; Delphinapterus leucas) from Svalbard, Norway, spanning two decades (1995–2016) are used to investigate how these species have responded to reduced sea-ice cover and increased Atlantic water influxes. Tidal glacier fronts were traditionally important foraging areas for both species. Following a period with dramatic environmental change, RS now spend significantly more time near tidal glaciers, where Arctic prey presumably still concentrate. Conversely, WW spend significantly less time near tidal glacier fronts and display spatial patterns that suggest that they are foraging on Atlantic fishes that are new to the region. Differences in levels of dietary specialization and overall behavioural plasticity are likely reasons for similar environmental pressures affecting these species differently. Climate change adjustments through behavioural plasticity will be vital for species survival in the Arctic, given the rapidity of change and limited dispersal options. Text Arctic Climate change Delphinapterus leucas glacier glacier Global warming Pusa hispida Sea ice Svalbard PubMed Central (PMC) Arctic Norway Svalbard Biology Letters 15 3 20180834 |
institution |
Open Polar |
collection |
PubMed Central (PMC) |
op_collection_id |
ftpubmed |
language |
English |
topic |
Global Change Biology |
spellingShingle |
Global Change Biology Hamilton, Charmain D. Vacquié-Garcia, Jade Kovacs, Kit M. Ims, Rolf A. Kohler, Jack Lydersen, Christian Contrasting changes in space use induced by climate change in two Arctic marine mammal species |
topic_facet |
Global Change Biology |
description |
Global warming is inducing major environmental changes in the Arctic. These changes will differentially affect species owing to differences in climate sensitivity and behavioural plasticity. Arctic endemic marine mammals are expected to be impacted significantly by ongoing changes in their key habitats owing to their long life cycles and dependence on ice. Herein, unique biotelemetry datasets for ringed seals (RS; Pusa hispida) and white whales (WW; Delphinapterus leucas) from Svalbard, Norway, spanning two decades (1995–2016) are used to investigate how these species have responded to reduced sea-ice cover and increased Atlantic water influxes. Tidal glacier fronts were traditionally important foraging areas for both species. Following a period with dramatic environmental change, RS now spend significantly more time near tidal glaciers, where Arctic prey presumably still concentrate. Conversely, WW spend significantly less time near tidal glacier fronts and display spatial patterns that suggest that they are foraging on Atlantic fishes that are new to the region. Differences in levels of dietary specialization and overall behavioural plasticity are likely reasons for similar environmental pressures affecting these species differently. Climate change adjustments through behavioural plasticity will be vital for species survival in the Arctic, given the rapidity of change and limited dispersal options. |
format |
Text |
author |
Hamilton, Charmain D. Vacquié-Garcia, Jade Kovacs, Kit M. Ims, Rolf A. Kohler, Jack Lydersen, Christian |
author_facet |
Hamilton, Charmain D. Vacquié-Garcia, Jade Kovacs, Kit M. Ims, Rolf A. Kohler, Jack Lydersen, Christian |
author_sort |
Hamilton, Charmain D. |
title |
Contrasting changes in space use induced by climate change in two Arctic marine mammal species |
title_short |
Contrasting changes in space use induced by climate change in two Arctic marine mammal species |
title_full |
Contrasting changes in space use induced by climate change in two Arctic marine mammal species |
title_fullStr |
Contrasting changes in space use induced by climate change in two Arctic marine mammal species |
title_full_unstemmed |
Contrasting changes in space use induced by climate change in two Arctic marine mammal species |
title_sort |
contrasting changes in space use induced by climate change in two arctic marine mammal species |
publisher |
The Royal Society |
publishDate |
2019 |
url |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6451376/ http://www.ncbi.nlm.nih.gov/pubmed/30836888 https://doi.org/10.1098/rsbl.2018.0834 |
geographic |
Arctic Norway Svalbard |
geographic_facet |
Arctic Norway Svalbard |
genre |
Arctic Climate change Delphinapterus leucas glacier glacier Global warming Pusa hispida Sea ice Svalbard |
genre_facet |
Arctic Climate change Delphinapterus leucas glacier glacier Global warming Pusa hispida Sea ice Svalbard |
op_relation |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6451376/ http://www.ncbi.nlm.nih.gov/pubmed/30836888 http://dx.doi.org/10.1098/rsbl.2018.0834 |
op_rights |
© 2019 The Author(s) http://royalsocietypublishing.org/licence Published by the Royal Society. All rights reserved. |
op_doi |
https://doi.org/10.1098/rsbl.2018.0834 |
container_title |
Biology Letters |
container_volume |
15 |
container_issue |
3 |
container_start_page |
20180834 |
_version_ |
1766313680102752256 |