Yeasts producing zeatin

The present paper describes the first screening study of the ability of natural yeast strains to synthesize in culture the plant-related cytokine hormone zeatin, which was carried out using HPLC-MS/MS. A collection of 76 wild strains of 36 yeast species (23 genera) isolated from a variety of natural...

Full description

Bibliographic Details
Published in:PeerJ
Main Authors: Streletskii, Rostislav A., Kachalkin, Aleksey V., Glushakova, Anna M., Yurkov, Andrey M., Demin, Vladimir V.
Format: Text
Language:English
Published: PeerJ Inc. 2019
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6387580/
http://www.ncbi.nlm.nih.gov/pubmed/30809453
https://doi.org/10.7717/peerj.6474
Description
Summary:The present paper describes the first screening study of the ability of natural yeast strains to synthesize in culture the plant-related cytokine hormone zeatin, which was carried out using HPLC-MS/MS. A collection of 76 wild strains of 36 yeast species (23 genera) isolated from a variety of natural substrates was tested for the production of zeatin using HPLC-MS/MS. Zeatin was detected in more than a half (55%) of studied strains and was more frequently observed among basidiomycetous than ascomycetous species. The amount of zeatin accumulated during the experiment varied among species and strains. Highest zeatin values were recorded for basidiomycete Sporobolomyces roseus and ascomycete Taphrina sp. that produced up to 8,850.0 ng and 5,166.4 ng of zeatin per g of dry biomass, respectively. On average, the ability to produce zeatin was more pronounced among species isolated from the arctic-alpine zone than among strains from tropical and temperate climates. Our study also demonstrated that epiphytic strains and pigmented yeast species, typically for phyllosphere, are able to more often produce a plant hormone zeatin than other yeasts.