Natal habitat preference induction in large mammals—Like mother, like child?

Habitat selection has received considerable attention from ecologists during the last decades, yet the underlying forces shaping individual differences in habitat selection are poorly documented. Some of these differences could be explained by the early experience of individuals in their natal habit...

Full description

Bibliographic Details
Published in:Ecology and Evolution
Main Authors: Larue, Benjamin, Côté, Steeve D., St‐Laurent, Martin‐Hugues, Dussault, Christian, Leblond, Mathieu
Format: Text
Language:English
Published: John Wiley and Sons Inc. 2018
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6309006/
http://www.ncbi.nlm.nih.gov/pubmed/30619569
https://doi.org/10.1002/ece3.4685
Description
Summary:Habitat selection has received considerable attention from ecologists during the last decades, yet the underlying forces shaping individual differences in habitat selection are poorly documented. Some of these differences could be explained by the early experience of individuals in their natal habitat. By selecting habitat attributes like those encountered early in life, individuals could improve resource acquisition, survival, and ultimately fitness. This behavior, known as natal habitat preference induction (NHPI), could be particularly common in large mammals, because offspring generally stay with their mother for an extended period. We used three complementary approaches to assess NHPI in a marked population of woodland caribou (Rangifer tarandus caribou): (a) population‐based resource selection functions (RSFs), (b) individual‐based RSFs, and (c) behavioral repeatability analyses. All approaches compared the behavior of calves in their natal range to their behavior as independent subadults during the snow‐covered (Dec–Apr) and snow‐free (May–Nov) seasons. Using RSFs, we found that the magnitude of habitat selection between calf and subadult stages differed for most covariates, yet the signs of statistically significant effects (selection vs. avoidance) were generally the same. We also found that some habitat selection tactics were highly repeatable across life stages. Notably, caribou responses to habitat disturbances were highly repeatable year‐round, meaning that different individuals reacted differently, but consistently, to disturbances. This study highlights the potential role of natal habitat preference induction in shaping individual differences in habitat selection in large mammals and provides valuable knowledge for the management and conservation of a threatened species.