Predator‐prey feedback in a gyrfalcon‐ptarmigan system?

Specialist predators with oscillating dynamics are often strongly affected by the population dynamics of their prey, yet they are not always the cause of prey cycling. Only those that exert strong (delayed) regulation of their prey can be. Inferring predator–prey coupling from time series therefore...

Full description

Bibliographic Details
Published in:Ecology and Evolution
Main Authors: Barraquand, Frédéric, Nielsen, Ólafur K.
Format: Text
Language:English
Published: John Wiley and Sons Inc. 2018
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308892/
http://www.ncbi.nlm.nih.gov/pubmed/30619555
https://doi.org/10.1002/ece3.4563
id ftpubmed:oai:pubmedcentral.nih.gov:6308892
record_format openpolar
spelling ftpubmed:oai:pubmedcentral.nih.gov:6308892 2023-05-15T16:10:06+02:00 Predator‐prey feedback in a gyrfalcon‐ptarmigan system? Barraquand, Frédéric Nielsen, Ólafur K. 2018-11-28 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308892/ http://www.ncbi.nlm.nih.gov/pubmed/30619555 https://doi.org/10.1002/ece3.4563 en eng John Wiley and Sons Inc. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308892/ http://www.ncbi.nlm.nih.gov/pubmed/30619555 http://dx.doi.org/10.1002/ece3.4563 © 2018 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. CC-BY Original Research Text 2018 ftpubmed https://doi.org/10.1002/ece3.4563 2019-01-13T01:20:17Z Specialist predators with oscillating dynamics are often strongly affected by the population dynamics of their prey, yet they are not always the cause of prey cycling. Only those that exert strong (delayed) regulation of their prey can be. Inferring predator–prey coupling from time series therefore requires contrasting models with top‐down versus bottom‐up predator–prey dynamics. We study here the joint dynamics of population densities of the Icelandic gyrfalcon Falco rusticolus, and its prey, the rock ptarmigan Lagopus muta. The dynamics of both species are likely not only linked to each other but also to stochastic weather variables acting as confounding factors. We infer the degree of coupling between populations, as well as forcing by abiotic variables, using multivariate autoregressive models MAR(p), with p = 1 and 2 time lags. MAR(2) models, allowing for species to cycle independently from each other, further suggest alternative scenarios where a cyclic prey influences its predator but not the other way around (i.e., bottom‐up scenarios). The classical MAR(1) model predicts that the time series exhibit predator–prey feedback (i.e., reciprocal dynamic influence between prey and predator), and that weather effects are weak and only affecting the gyrfalcon population. Bottom‐up MAR(2) models produced a better fit but less realistic cross‐correlation patterns. Simulations of MAR(1) and MAR(2) models further demonstrate that the top‐down MAR(1) models are more likely to be misidentified as bottom‐up dynamics than vice versa. We therefore conclude that predator–prey feedback in the gyrfalcon–ptarmigan system is likely the main cause of observed oscillations, though bottom‐up dynamics cannot yet be excluded with certainty. Overall, we showed how to make more out of ecological time series by using simulations to gauge the quality of model identification, and paved the way for more mechanistic modeling of this system by narrowing the set of important biotic and abiotic drivers. Text Falco rusticolus gyrfalcon Lagopus muta rock ptarmigan PubMed Central (PMC) Ecology and Evolution 8 24 12425 12434
institution Open Polar
collection PubMed Central (PMC)
op_collection_id ftpubmed
language English
topic Original Research
spellingShingle Original Research
Barraquand, Frédéric
Nielsen, Ólafur K.
Predator‐prey feedback in a gyrfalcon‐ptarmigan system?
topic_facet Original Research
description Specialist predators with oscillating dynamics are often strongly affected by the population dynamics of their prey, yet they are not always the cause of prey cycling. Only those that exert strong (delayed) regulation of their prey can be. Inferring predator–prey coupling from time series therefore requires contrasting models with top‐down versus bottom‐up predator–prey dynamics. We study here the joint dynamics of population densities of the Icelandic gyrfalcon Falco rusticolus, and its prey, the rock ptarmigan Lagopus muta. The dynamics of both species are likely not only linked to each other but also to stochastic weather variables acting as confounding factors. We infer the degree of coupling between populations, as well as forcing by abiotic variables, using multivariate autoregressive models MAR(p), with p = 1 and 2 time lags. MAR(2) models, allowing for species to cycle independently from each other, further suggest alternative scenarios where a cyclic prey influences its predator but not the other way around (i.e., bottom‐up scenarios). The classical MAR(1) model predicts that the time series exhibit predator–prey feedback (i.e., reciprocal dynamic influence between prey and predator), and that weather effects are weak and only affecting the gyrfalcon population. Bottom‐up MAR(2) models produced a better fit but less realistic cross‐correlation patterns. Simulations of MAR(1) and MAR(2) models further demonstrate that the top‐down MAR(1) models are more likely to be misidentified as bottom‐up dynamics than vice versa. We therefore conclude that predator–prey feedback in the gyrfalcon–ptarmigan system is likely the main cause of observed oscillations, though bottom‐up dynamics cannot yet be excluded with certainty. Overall, we showed how to make more out of ecological time series by using simulations to gauge the quality of model identification, and paved the way for more mechanistic modeling of this system by narrowing the set of important biotic and abiotic drivers.
format Text
author Barraquand, Frédéric
Nielsen, Ólafur K.
author_facet Barraquand, Frédéric
Nielsen, Ólafur K.
author_sort Barraquand, Frédéric
title Predator‐prey feedback in a gyrfalcon‐ptarmigan system?
title_short Predator‐prey feedback in a gyrfalcon‐ptarmigan system?
title_full Predator‐prey feedback in a gyrfalcon‐ptarmigan system?
title_fullStr Predator‐prey feedback in a gyrfalcon‐ptarmigan system?
title_full_unstemmed Predator‐prey feedback in a gyrfalcon‐ptarmigan system?
title_sort predator‐prey feedback in a gyrfalcon‐ptarmigan system?
publisher John Wiley and Sons Inc.
publishDate 2018
url http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308892/
http://www.ncbi.nlm.nih.gov/pubmed/30619555
https://doi.org/10.1002/ece3.4563
genre Falco rusticolus
gyrfalcon
Lagopus muta
rock ptarmigan
genre_facet Falco rusticolus
gyrfalcon
Lagopus muta
rock ptarmigan
op_relation http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308892/
http://www.ncbi.nlm.nih.gov/pubmed/30619555
http://dx.doi.org/10.1002/ece3.4563
op_rights © 2018 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
op_rightsnorm CC-BY
op_doi https://doi.org/10.1002/ece3.4563
container_title Ecology and Evolution
container_volume 8
container_issue 24
container_start_page 12425
op_container_end_page 12434
_version_ 1765995347873628160