Subfossil trees suggest enhanced Mediterranean hydroclimate variability at the onset of the Younger Dryas

Nearly 13,000 years ago, the warming trend into the Holocene was sharply interrupted by a reversal to near glacial conditions. Climatic causes and ecological consequences of the Younger Dryas (YD) have been extensively studied, however proxy archives from the Mediterranean basin capturing this perio...

Full description

Bibliographic Details
Published in:Scientific Reports
Main Authors: Pauly, Maren, Helle, Gerhard, Miramont, Cécile, Büntgen, Ulf, Treydte, Kerstin, Reinig, Frederick, Guibal, Frédéric, Sivan, Olivier, Heinrich, Ingo, Riedel, Frank, Kromer, Bernd, Balanzategui, Daniel, Wacker, Lukas, Sookdeo, Adam, Brauer, Achim
Format: Text
Language:English
Published: Nature Publishing Group UK 2018
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6143623/
http://www.ncbi.nlm.nih.gov/pubmed/30228341
https://doi.org/10.1038/s41598-018-32251-2
id ftpubmed:oai:pubmedcentral.nih.gov:6143623
record_format openpolar
spelling ftpubmed:oai:pubmedcentral.nih.gov:6143623 2023-05-15T17:33:43+02:00 Subfossil trees suggest enhanced Mediterranean hydroclimate variability at the onset of the Younger Dryas Pauly, Maren Helle, Gerhard Miramont, Cécile Büntgen, Ulf Treydte, Kerstin Reinig, Frederick Guibal, Frédéric Sivan, Olivier Heinrich, Ingo Riedel, Frank Kromer, Bernd Balanzategui, Daniel Wacker, Lukas Sookdeo, Adam Brauer, Achim 2018-09-18 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6143623/ http://www.ncbi.nlm.nih.gov/pubmed/30228341 https://doi.org/10.1038/s41598-018-32251-2 en eng Nature Publishing Group UK http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6143623/ http://www.ncbi.nlm.nih.gov/pubmed/30228341 http://dx.doi.org/10.1038/s41598-018-32251-2 © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. CC-BY Article Text 2018 ftpubmed https://doi.org/10.1038/s41598-018-32251-2 2018-09-30T00:17:57Z Nearly 13,000 years ago, the warming trend into the Holocene was sharply interrupted by a reversal to near glacial conditions. Climatic causes and ecological consequences of the Younger Dryas (YD) have been extensively studied, however proxy archives from the Mediterranean basin capturing this period are scarce and do not provide annual resolution. Here, we report a hydroclimatic reconstruction from stable isotopes (δ18O, δ13C) in subfossil pines from southern France. Growing before and during the transition period into the YD (12 900–12 600 cal BP), the trees provide an annually resolved, continuous sequence of atmospheric change. Isotopic signature of tree sourcewater (δ18Osw) and estimates of relative air humidity were reconstructed as a proxy for variations in air mass origin and precipitation regime. We find a distinct increase in inter-annual variability of sourcewater isotopes (δ18Osw), with three major downturn phases of increasing magnitude beginning at 12 740 cal BP. The observed variation most likely results from an amplified intensity of North Atlantic (low δ18Osw) versus Mediterranean (high δ18Osw) precipitation. This marked pattern of climate variability is not seen in records from higher latitudes and is likely a consequence of atmospheric circulation oscillations at the margin of the southward moving polar front. Text North Atlantic PubMed Central (PMC) Scientific Reports 8 1
institution Open Polar
collection PubMed Central (PMC)
op_collection_id ftpubmed
language English
topic Article
spellingShingle Article
Pauly, Maren
Helle, Gerhard
Miramont, Cécile
Büntgen, Ulf
Treydte, Kerstin
Reinig, Frederick
Guibal, Frédéric
Sivan, Olivier
Heinrich, Ingo
Riedel, Frank
Kromer, Bernd
Balanzategui, Daniel
Wacker, Lukas
Sookdeo, Adam
Brauer, Achim
Subfossil trees suggest enhanced Mediterranean hydroclimate variability at the onset of the Younger Dryas
topic_facet Article
description Nearly 13,000 years ago, the warming trend into the Holocene was sharply interrupted by a reversal to near glacial conditions. Climatic causes and ecological consequences of the Younger Dryas (YD) have been extensively studied, however proxy archives from the Mediterranean basin capturing this period are scarce and do not provide annual resolution. Here, we report a hydroclimatic reconstruction from stable isotopes (δ18O, δ13C) in subfossil pines from southern France. Growing before and during the transition period into the YD (12 900–12 600 cal BP), the trees provide an annually resolved, continuous sequence of atmospheric change. Isotopic signature of tree sourcewater (δ18Osw) and estimates of relative air humidity were reconstructed as a proxy for variations in air mass origin and precipitation regime. We find a distinct increase in inter-annual variability of sourcewater isotopes (δ18Osw), with three major downturn phases of increasing magnitude beginning at 12 740 cal BP. The observed variation most likely results from an amplified intensity of North Atlantic (low δ18Osw) versus Mediterranean (high δ18Osw) precipitation. This marked pattern of climate variability is not seen in records from higher latitudes and is likely a consequence of atmospheric circulation oscillations at the margin of the southward moving polar front.
format Text
author Pauly, Maren
Helle, Gerhard
Miramont, Cécile
Büntgen, Ulf
Treydte, Kerstin
Reinig, Frederick
Guibal, Frédéric
Sivan, Olivier
Heinrich, Ingo
Riedel, Frank
Kromer, Bernd
Balanzategui, Daniel
Wacker, Lukas
Sookdeo, Adam
Brauer, Achim
author_facet Pauly, Maren
Helle, Gerhard
Miramont, Cécile
Büntgen, Ulf
Treydte, Kerstin
Reinig, Frederick
Guibal, Frédéric
Sivan, Olivier
Heinrich, Ingo
Riedel, Frank
Kromer, Bernd
Balanzategui, Daniel
Wacker, Lukas
Sookdeo, Adam
Brauer, Achim
author_sort Pauly, Maren
title Subfossil trees suggest enhanced Mediterranean hydroclimate variability at the onset of the Younger Dryas
title_short Subfossil trees suggest enhanced Mediterranean hydroclimate variability at the onset of the Younger Dryas
title_full Subfossil trees suggest enhanced Mediterranean hydroclimate variability at the onset of the Younger Dryas
title_fullStr Subfossil trees suggest enhanced Mediterranean hydroclimate variability at the onset of the Younger Dryas
title_full_unstemmed Subfossil trees suggest enhanced Mediterranean hydroclimate variability at the onset of the Younger Dryas
title_sort subfossil trees suggest enhanced mediterranean hydroclimate variability at the onset of the younger dryas
publisher Nature Publishing Group UK
publishDate 2018
url http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6143623/
http://www.ncbi.nlm.nih.gov/pubmed/30228341
https://doi.org/10.1038/s41598-018-32251-2
genre North Atlantic
genre_facet North Atlantic
op_relation http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6143623/
http://www.ncbi.nlm.nih.gov/pubmed/30228341
http://dx.doi.org/10.1038/s41598-018-32251-2
op_rights © The Author(s) 2018
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
op_rightsnorm CC-BY
op_doi https://doi.org/10.1038/s41598-018-32251-2
container_title Scientific Reports
container_volume 8
container_issue 1
_version_ 1766132308642889728