Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification

The impacts of ocean acidification in nearshore estuarine environments remain poorly characterized, despite these areas being some of the most ecologically important habitats in the global ocean. Here, we quantify how rising atmospheric CO2 from the years 1765 to 2100 alters high-frequency carbonate...

Full description

Bibliographic Details
Published in:Proceedings of the National Academy of Sciences
Main Authors: Pacella, Stephen R., Brown, Cheryl A., Waldbusser, George G., Labiosa, Rochelle G., Hales, Burke
Format: Text
Language:English
Published: National Academy of Sciences 2018
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5899429/
http://www.ncbi.nlm.nih.gov/pubmed/29610330
https://doi.org/10.1073/pnas.1703445115
id ftpubmed:oai:pubmedcentral.nih.gov:5899429
record_format openpolar
spelling ftpubmed:oai:pubmedcentral.nih.gov:5899429 2023-05-15T17:49:59+02:00 Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification Pacella, Stephen R. Brown, Cheryl A. Waldbusser, George G. Labiosa, Rochelle G. Hales, Burke 2018-04-10 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5899429/ http://www.ncbi.nlm.nih.gov/pubmed/29610330 https://doi.org/10.1073/pnas.1703445115 en eng National Academy of Sciences http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5899429/ http://www.ncbi.nlm.nih.gov/pubmed/29610330 http://dx.doi.org/10.1073/pnas.1703445115 Published under the PNAS license (http://www.pnas.org/site/aboutpnas/licenses.xhtml) . Biological Sciences Text 2018 ftpubmed https://doi.org/10.1073/pnas.1703445115 2018-10-14T00:21:00Z The impacts of ocean acidification in nearshore estuarine environments remain poorly characterized, despite these areas being some of the most ecologically important habitats in the global ocean. Here, we quantify how rising atmospheric CO2 from the years 1765 to 2100 alters high-frequency carbonate chemistry dynamics in an estuarine seagrass habitat. We find that increasing anthropogenic carbon reduces the ability of the system to buffer natural extremes in CO2. This reduced buffering capacity leads to preferential amplification of naturally extreme low pH and high pCO2(s.w.) events above changes in average conditions, which outpace rates published for atmospheric and open-ocean CO2 change. Seagrass habitat metabolism drives these short-term extreme events, yet ultimately reduces organismal exposure to harmful conditions in future high-CO2 scenarios. Text Ocean acidification PubMed Central (PMC) Proceedings of the National Academy of Sciences 115 15 3870 3875
institution Open Polar
collection PubMed Central (PMC)
op_collection_id ftpubmed
language English
topic Biological Sciences
spellingShingle Biological Sciences
Pacella, Stephen R.
Brown, Cheryl A.
Waldbusser, George G.
Labiosa, Rochelle G.
Hales, Burke
Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification
topic_facet Biological Sciences
description The impacts of ocean acidification in nearshore estuarine environments remain poorly characterized, despite these areas being some of the most ecologically important habitats in the global ocean. Here, we quantify how rising atmospheric CO2 from the years 1765 to 2100 alters high-frequency carbonate chemistry dynamics in an estuarine seagrass habitat. We find that increasing anthropogenic carbon reduces the ability of the system to buffer natural extremes in CO2. This reduced buffering capacity leads to preferential amplification of naturally extreme low pH and high pCO2(s.w.) events above changes in average conditions, which outpace rates published for atmospheric and open-ocean CO2 change. Seagrass habitat metabolism drives these short-term extreme events, yet ultimately reduces organismal exposure to harmful conditions in future high-CO2 scenarios.
format Text
author Pacella, Stephen R.
Brown, Cheryl A.
Waldbusser, George G.
Labiosa, Rochelle G.
Hales, Burke
author_facet Pacella, Stephen R.
Brown, Cheryl A.
Waldbusser, George G.
Labiosa, Rochelle G.
Hales, Burke
author_sort Pacella, Stephen R.
title Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification
title_short Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification
title_full Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification
title_fullStr Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification
title_full_unstemmed Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification
title_sort seagrass habitat metabolism increases short-term extremes and long-term offset of co2 under future ocean acidification
publisher National Academy of Sciences
publishDate 2018
url http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5899429/
http://www.ncbi.nlm.nih.gov/pubmed/29610330
https://doi.org/10.1073/pnas.1703445115
genre Ocean acidification
genre_facet Ocean acidification
op_relation http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5899429/
http://www.ncbi.nlm.nih.gov/pubmed/29610330
http://dx.doi.org/10.1073/pnas.1703445115
op_rights Published under the PNAS license (http://www.pnas.org/site/aboutpnas/licenses.xhtml) .
op_doi https://doi.org/10.1073/pnas.1703445115
container_title Proceedings of the National Academy of Sciences
container_volume 115
container_issue 15
container_start_page 3870
op_container_end_page 3875
_version_ 1766156537095520256