Detecting regional patterns of changing CO2 flux in Alaska

Dramatic warming in northern high latitudes has led to increased photosynthetic carbon uptake during the short, intense growing season; however, microbial decomposition of soil carbon and increased emissions during the long cold season may offset summer uptake and impart a positive feedback on the g...

Full description

Bibliographic Details
Published in:Proceedings of the National Academy of Sciences
Main Authors: Parazoo, Nicholas C., Commane, Roisin, Wofsy, Steven C., Koven, Charles D., Sweeney, Colm, Lawrence, David M., Lindaas, Jakob, Chang, Rachel Y.-W., Miller, Charles E.
Format: Text
Language:English
Published: National Academy of Sciences 2016
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4948307/
http://www.ncbi.nlm.nih.gov/pubmed/27354511
https://doi.org/10.1073/pnas.1601085113
Description
Summary:Dramatic warming in northern high latitudes has led to increased photosynthetic carbon uptake during the short, intense growing season; however, microbial decomposition of soil carbon and increased emissions during the long cold season may offset summer uptake and impart a positive feedback on the global climate system. We show that current airborne and satellite measurements of atmospheric CO2 can accurately quantify summer uptake but are insufficient to detect regional changes in cold season emissions. As the potential for Arctic carbon budgets to become impacted by permafrost thaw and cold season emissions increases, strategies focused on year-round vertical profiles and improved spatial sampling will be needed to track carbon balance changes.