Comparative Demography of Skates: Life-History Correlates of Productivity and Implications for Management

Age-structured demographic models were constructed based on empirical estimates of longevity and maturity for five deepwater Bering Sea skates to investigate how observed differences in life history parameters affect population growth rates. Monte Carlo simulations were used to incorporate parameter...

Full description

Bibliographic Details
Published in:PLoS ONE
Main Authors: Barnett, Lewis A. K., Winton, Megan V., Ainsley, Shaara M., Cailliet, Gregor M., Ebert, David A.
Format: Text
Language:English
Published: Public Library of Science 2013
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3669027
http://www.ncbi.nlm.nih.gov/pubmed/23741442
https://doi.org/10.1371/journal.pone.0065000
Description
Summary:Age-structured demographic models were constructed based on empirical estimates of longevity and maturity for five deepwater Bering Sea skates to investigate how observed differences in life history parameters affect population growth rates. Monte Carlo simulations were used to incorporate parameter uncertainty. Estimated population growth rates ranged from 1.045 to 1.129 yr−1 and were lower than those reported for other Alaskan skates and most chondrichthyans. Population growth rates of these and other high-latitude skates increased with relative reproductive lifespan, but displayed no significant relationship with body size or depth distribution, suggesting that assemblage shifts may be difficult to predict for data-poor taxa. Elasticity analyses indicated that juvenile and adult survival had greater per-unit effects on population growth rates than did egg-case survival or fecundity. Population growth rate was affected more by uncertainty in age at maturity than maximum age. The results of this study indicate that if skates are deemed to be a management concern, gear modifications or depth-specific effort controls may be effective.