Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms

A substantial part of the Earths' soil organic carbon (SOC) is stored in Arctic permafrost peatlands, which represent large potential sources for increased emissions of the greenhouse gases CH4 and CO2 in a warming climate. The microbial communities and their genetic repertoire involved in the...

Full description

Bibliographic Details
Published in:The ISME Journal
Main Authors: Tveit, Alexander, Schwacke, Rainer, Svenning, Mette M, Urich, Tim
Format: Text
Language:English
Published: Nature Publishing Group 2013
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3554415
http://www.ncbi.nlm.nih.gov/pubmed/22955232
https://doi.org/10.1038/ismej.2012.99
id ftpubmed:oai:pubmedcentral.nih.gov:3554415
record_format openpolar
spelling ftpubmed:oai:pubmedcentral.nih.gov:3554415 2023-05-15T14:45:36+02:00 Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms Tveit, Alexander Schwacke, Rainer Svenning, Mette M Urich, Tim 2013-02 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3554415 http://www.ncbi.nlm.nih.gov/pubmed/22955232 https://doi.org/10.1038/ismej.2012.99 en eng Nature Publishing Group http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3554415 http://www.ncbi.nlm.nih.gov/pubmed/22955232 http://dx.doi.org/10.1038/ismej.2012.99 Copyright © 2013 International Society for Microbial Ecology http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ CC-BY-NC-ND Original Article Text 2013 ftpubmed https://doi.org/10.1038/ismej.2012.99 2013-09-04T18:53:56Z A substantial part of the Earths' soil organic carbon (SOC) is stored in Arctic permafrost peatlands, which represent large potential sources for increased emissions of the greenhouse gases CH4 and CO2 in a warming climate. The microbial communities and their genetic repertoire involved in the breakdown and mineralisation of SOC in these soils are, however, poorly understood. In this study, we applied a combined metagenomic and metatranscriptomic approach on two Arctic peat soils to investigate the identity and the gene pool of the microbiota driving the SOC degradation in the seasonally thawed active layers. A large and diverse set of genes encoding plant polymer-degrading enzymes was found, comparable to microbiotas from temperate and subtropical soils. This indicates that the metabolic potential for SOC degradation in Arctic peat is not different from that of other climatic zones. The majority of these genes were assigned to three bacterial phyla, Actinobacteria, Verrucomicrobia and Bacteroidetes. Anaerobic metabolic pathways and the fraction of methanogenic archaea increased with peat depth, evident for a gradual transition from aerobic to anaerobic lifestyles. A population of CH4-oxidising bacteria closely related to Methylobacter tundripaludum was the dominating active group of methanotrophs. Based on the in-depth characterisation of the microbes and their genes, we conclude that these Arctic peat soils will turn into CO2 sources owing to increased active layer depth and prolonged growing season. However, the extent of future CH4 emissions will critically depend on the response of the methanotrophic bacteria. Text Arctic permafrost PubMed Central (PMC) Arctic The ISME Journal 7 2 299 311
institution Open Polar
collection PubMed Central (PMC)
op_collection_id ftpubmed
language English
topic Original Article
spellingShingle Original Article
Tveit, Alexander
Schwacke, Rainer
Svenning, Mette M
Urich, Tim
Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms
topic_facet Original Article
description A substantial part of the Earths' soil organic carbon (SOC) is stored in Arctic permafrost peatlands, which represent large potential sources for increased emissions of the greenhouse gases CH4 and CO2 in a warming climate. The microbial communities and their genetic repertoire involved in the breakdown and mineralisation of SOC in these soils are, however, poorly understood. In this study, we applied a combined metagenomic and metatranscriptomic approach on two Arctic peat soils to investigate the identity and the gene pool of the microbiota driving the SOC degradation in the seasonally thawed active layers. A large and diverse set of genes encoding plant polymer-degrading enzymes was found, comparable to microbiotas from temperate and subtropical soils. This indicates that the metabolic potential for SOC degradation in Arctic peat is not different from that of other climatic zones. The majority of these genes were assigned to three bacterial phyla, Actinobacteria, Verrucomicrobia and Bacteroidetes. Anaerobic metabolic pathways and the fraction of methanogenic archaea increased with peat depth, evident for a gradual transition from aerobic to anaerobic lifestyles. A population of CH4-oxidising bacteria closely related to Methylobacter tundripaludum was the dominating active group of methanotrophs. Based on the in-depth characterisation of the microbes and their genes, we conclude that these Arctic peat soils will turn into CO2 sources owing to increased active layer depth and prolonged growing season. However, the extent of future CH4 emissions will critically depend on the response of the methanotrophic bacteria.
format Text
author Tveit, Alexander
Schwacke, Rainer
Svenning, Mette M
Urich, Tim
author_facet Tveit, Alexander
Schwacke, Rainer
Svenning, Mette M
Urich, Tim
author_sort Tveit, Alexander
title Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms
title_short Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms
title_full Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms
title_fullStr Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms
title_full_unstemmed Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms
title_sort organic carbon transformations in high-arctic peat soils: key functions and microorganisms
publisher Nature Publishing Group
publishDate 2013
url http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3554415
http://www.ncbi.nlm.nih.gov/pubmed/22955232
https://doi.org/10.1038/ismej.2012.99
geographic Arctic
geographic_facet Arctic
genre Arctic
permafrost
genre_facet Arctic
permafrost
op_relation http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3554415
http://www.ncbi.nlm.nih.gov/pubmed/22955232
http://dx.doi.org/10.1038/ismej.2012.99
op_rights Copyright © 2013 International Society for Microbial Ecology
http://creativecommons.org/licenses/by-nc-nd/3.0/
This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/
op_rightsnorm CC-BY-NC-ND
op_doi https://doi.org/10.1038/ismej.2012.99
container_title The ISME Journal
container_volume 7
container_issue 2
container_start_page 299
op_container_end_page 311
_version_ 1766316992691699712