Site-directed mutagenesis of a family 42 β-galactosidase from an antarctic bacterium

Site directed mutagenesis was used to modify the active site of a cold active beta-galactosidase taken from an Antarctic psychrotolerant Planococcus Bacterial isolate. The goal was to modify the active site such that there would be an increase in activity on certain substrates which showed little to...

Full description

Bibliographic Details
Main Authors: Shumway, Matthew V, Sheridan, Peter P
Format: Text
Language:English
Published: e-Century Publishing Corporation 2012
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3388732
http://www.ncbi.nlm.nih.gov/pubmed/22773960
Description
Summary:Site directed mutagenesis was used to modify the active site of a cold active beta-galactosidase taken from an Antarctic psychrotolerant Planococcus Bacterial isolate. The goal was to modify the active site such that there would be an increase in activity on certain substrates which showed little to no activity with the wild type enzyme. A total of 5 mutant enzymes were constructed with amino acid changes based on an analysis done via homology modeling. All 5 modified enzymes were assayed using 14 different nitrophenol substrates. In most cases there was a loss of activity on substrates that showed activity with the wild type enzymes. None of the expected activity was observed with any of the mutants, possibly in part due to a decrease in hydrogen bonding between the active site and the substrates. With the substrates p-nitrophenyl-β-d-galacturonide and p-nitrophenyl-α-d-glucopyranoside we saw increased activity. With one of the mutants we measured a 320% increase in activity on p-nitrophenyl-β-d-galacturonide. Two other mutants showed activity on p-nitrophenyl-α-d-glucopyranoside, which showed no activity at all with the wild type enzyme.