End-Cretaceous marine mass extinction not caused by productivity collapse
An asteroid impact at the end of the Cretaceous caused mass extinction, but extinction mechanisms are not well-understood. The collapse of sea surface to sea floor carbon isotope gradients has been interpreted as reflecting a global collapse of primary productivity (Strangelove Ocean) or export prod...
Published in: | Proceedings of the National Academy of Sciences |
---|---|
Main Authors: | , , |
Format: | Text |
Language: | English |
Published: |
National Academy of Sciences
2012
|
Subjects: | |
Online Access: | http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271934 http://www.ncbi.nlm.nih.gov/pubmed/22207626 https://doi.org/10.1073/pnas.1110601109 |
id |
ftpubmed:oai:pubmedcentral.nih.gov:3271934 |
---|---|
record_format |
openpolar |
spelling |
ftpubmed:oai:pubmedcentral.nih.gov:3271934 2023-05-15T17:51:10+02:00 End-Cretaceous marine mass extinction not caused by productivity collapse Alegret, Laia Thomas, Ellen Lohmann, Kyger C 2012-01-17 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271934 http://www.ncbi.nlm.nih.gov/pubmed/22207626 https://doi.org/10.1073/pnas.1110601109 en eng National Academy of Sciences http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271934 http://www.ncbi.nlm.nih.gov/pubmed/22207626 http://dx.doi.org/10.1073/pnas.1110601109 Physical Sciences Text 2012 ftpubmed https://doi.org/10.1073/pnas.1110601109 2013-09-04T02:09:03Z An asteroid impact at the end of the Cretaceous caused mass extinction, but extinction mechanisms are not well-understood. The collapse of sea surface to sea floor carbon isotope gradients has been interpreted as reflecting a global collapse of primary productivity (Strangelove Ocean) or export productivity (Living Ocean), which caused mass extinction higher in the marine food chain. Phytoplankton-dependent benthic foraminifera on the deep-sea floor, however, did not suffer significant extinction, suggesting that export productivity persisted at a level sufficient to support their populations. We compare benthic foraminiferal records with benthic and bulk stable carbon isotope records from the Pacific, Southeast Atlantic, and Southern Oceans. We conclude that end-Cretaceous decrease in export productivity was moderate, regional, and insufficient to explain marine mass extinction. A transient episode of surface ocean acidification may have been the main cause of extinction of calcifying plankton and ammonites, and recovery of productivity may have been as fast in the oceans as on land. Text Ocean acidification PubMed Central (PMC) Pacific Proceedings of the National Academy of Sciences 109 3 728 732 |
institution |
Open Polar |
collection |
PubMed Central (PMC) |
op_collection_id |
ftpubmed |
language |
English |
topic |
Physical Sciences |
spellingShingle |
Physical Sciences Alegret, Laia Thomas, Ellen Lohmann, Kyger C End-Cretaceous marine mass extinction not caused by productivity collapse |
topic_facet |
Physical Sciences |
description |
An asteroid impact at the end of the Cretaceous caused mass extinction, but extinction mechanisms are not well-understood. The collapse of sea surface to sea floor carbon isotope gradients has been interpreted as reflecting a global collapse of primary productivity (Strangelove Ocean) or export productivity (Living Ocean), which caused mass extinction higher in the marine food chain. Phytoplankton-dependent benthic foraminifera on the deep-sea floor, however, did not suffer significant extinction, suggesting that export productivity persisted at a level sufficient to support their populations. We compare benthic foraminiferal records with benthic and bulk stable carbon isotope records from the Pacific, Southeast Atlantic, and Southern Oceans. We conclude that end-Cretaceous decrease in export productivity was moderate, regional, and insufficient to explain marine mass extinction. A transient episode of surface ocean acidification may have been the main cause of extinction of calcifying plankton and ammonites, and recovery of productivity may have been as fast in the oceans as on land. |
format |
Text |
author |
Alegret, Laia Thomas, Ellen Lohmann, Kyger C |
author_facet |
Alegret, Laia Thomas, Ellen Lohmann, Kyger C |
author_sort |
Alegret, Laia |
title |
End-Cretaceous marine mass extinction not caused by productivity collapse |
title_short |
End-Cretaceous marine mass extinction not caused by productivity collapse |
title_full |
End-Cretaceous marine mass extinction not caused by productivity collapse |
title_fullStr |
End-Cretaceous marine mass extinction not caused by productivity collapse |
title_full_unstemmed |
End-Cretaceous marine mass extinction not caused by productivity collapse |
title_sort |
end-cretaceous marine mass extinction not caused by productivity collapse |
publisher |
National Academy of Sciences |
publishDate |
2012 |
url |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271934 http://www.ncbi.nlm.nih.gov/pubmed/22207626 https://doi.org/10.1073/pnas.1110601109 |
geographic |
Pacific |
geographic_facet |
Pacific |
genre |
Ocean acidification |
genre_facet |
Ocean acidification |
op_relation |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271934 http://www.ncbi.nlm.nih.gov/pubmed/22207626 http://dx.doi.org/10.1073/pnas.1110601109 |
op_doi |
https://doi.org/10.1073/pnas.1110601109 |
container_title |
Proceedings of the National Academy of Sciences |
container_volume |
109 |
container_issue |
3 |
container_start_page |
728 |
op_container_end_page |
732 |
_version_ |
1766158233035079680 |