In Silico Evidence for Gluconeogenesis from Fatty Acids in Humans

The question whether fatty acids can be converted into glucose in humans has a long standing tradition in biochemistry, and the expected answer is “No”. Using recent advances in Systems Biology in the form of large-scale metabolic reconstructions, we reassessed this question by performing a global i...

Full description

Bibliographic Details
Published in:PLoS Computational Biology
Main Authors: Kaleta, Christoph, de Figueiredo, Luís F., Werner, Sarah, Guthke, Reinhard, Ristow, Michael, Schuster, Stefan
Format: Text
Language:English
Published: Public Library of Science 2011
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3140964
http://www.ncbi.nlm.nih.gov/pubmed/21814506
https://doi.org/10.1371/journal.pcbi.1002116
Description
Summary:The question whether fatty acids can be converted into glucose in humans has a long standing tradition in biochemistry, and the expected answer is “No”. Using recent advances in Systems Biology in the form of large-scale metabolic reconstructions, we reassessed this question by performing a global investigation of a genome-scale human metabolic network, which had been reconstructed on the basis of experimental results. By elementary flux pattern analysis, we found numerous pathways on which gluconeogenesis from fatty acids is feasible in humans. On these pathways, four moles of acetyl-CoA are converted into one mole of glucose and two moles of CO2. Analyzing the detected pathways in detail we found that their energetic requirements potentially limit their capacity. This study has many other biochemical implications: effect of starvation, sports physiology, practically carbohydrate-free diets of inuit, as well as survival of hibernating animals and embryos of egg-laying animals. Moreover, the energetic loss associated to the usage of gluconeogenesis from fatty acids can help explain the efficiency of carbohydrate reduced and ketogenic diets such as the Atkins diet.