Arctic “ozone hole” in a cold volcanic stratosphere

Optical depth records indicate that volcanic aerosols from major eruptions often produce clouds that have greater surface area than typical Arctic polar stratospheric clouds (PSCs). A trajectory cloud–chemistry model is used to study how volcanic aerosols could affect springtime Arctic ozone loss pr...

Full description

Bibliographic Details
Published in:Proceedings of the National Academy of Sciences
Main Authors: Tabazadeh, A., Drdla, K., Schoeberl, M. R., Hamill, P., Toon, O. B.
Format: Text
Language:English
Published: The National Academy of Sciences 2002
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC122395
http://www.ncbi.nlm.nih.gov/pubmed/11854461
https://doi.org/10.1073/pnas.052518199
Description
Summary:Optical depth records indicate that volcanic aerosols from major eruptions often produce clouds that have greater surface area than typical Arctic polar stratospheric clouds (PSCs). A trajectory cloud–chemistry model is used to study how volcanic aerosols could affect springtime Arctic ozone loss processes, such as chlorine activation and denitrification, in a cold winter within the current range of natural variability. Several studies indicate that severe denitrification can increase Arctic ozone loss by up to 30%. We show large PSC particles that cause denitrification in a nonvolcanic stratosphere cannot efficiently form in a volcanic environment. However, volcanic aerosols, when present at low altitudes, where Arctic PSCs cannot form, can extend the vertical range of chemical ozone loss in the lower stratosphere. Chemical processing on volcanic aerosols over a 10-km altitude range could increase the current levels of springtime column ozone loss by up to 70% independent of denitrification. Climate models predict that the lower stratosphere is cooling as a result of greenhouse gas built-up in the troposphere. The magnitude of column ozone loss calculated here for the 1999–2000 Arctic winter, in an assumed volcanic state, is similar to that projected for a colder future nonvolcanic stratosphere in the 2010 decade.