The nature and properties of the inducible sodium-plus-potassium ion-dependent adenosine triphosphatase in the gills of eels (Anguilla anguilla) adapted to fresh water and sea water

1. Gill tissue from eels adapted to fresh water or to sea water was disrupted in 0.32m-sucrose containing 0.1% (w/v) sodium deoxycholate and the subcellular distribution of (Na++K+)-dependent adenosine triphosphatase was determined. 2. About 70% of the recovered enzyme was in a fraction sedimenting...

Full description

Bibliographic Details
Main Authors: Sargent, John R., Thomson, Alison J.
Format: Text
Language:English
Published: 1974
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1168465
http://www.ncbi.nlm.nih.gov/pubmed/4282472
Description
Summary:1. Gill tissue from eels adapted to fresh water or to sea water was disrupted in 0.32m-sucrose containing 0.1% (w/v) sodium deoxycholate and the subcellular distribution of (Na++K+)-dependent adenosine triphosphatase was determined. 2. About 70% of the recovered enzyme was in a fraction sedimenting between 225000gav.-min and 6000000gav.-min; the specific activities of enzymes from tissues of freshwater and seawater eels were 16 and 51 μmol of phosphate/h per mg of protein respectively. 3. The enzymes from gills of freshwater and seawater eels were indistinguishable on the basis of a number of parameters. These included phosphorylation by [γ-32P]ATP, the binding of [3H]ouabain, the extent to which bound [3H]ouabain was displaced by increasing concentrations of KCl and pH optima. 4. Electrophoresis on polyacrylamide gels in sodium dodecyl sulphate showed that enzyme preparations from both sources had an identical number of protein components. 5. The higher specific activity of (Na++K+)-dependent adenosine triphosphatase from tissue of seawater eels was accompanied by increased amounts of two protein components. One of these proteins retained 32P after treatment of the enzyme with [γ-32P]ATP and had mol.wt. 97000; the other component was a glycoprotein with mol.wt. approx. 46000. 6. The results are discussed in terms of the nature of the transepithelial NaCl pumps in the gills of freshwater and seawater fish.