Carry-Over Effects of Climate Variability at Breeding and Non-Breeding Grounds on Spring Migration in the European Wren Troglodytes troglodytes at the Baltic Coast

SIMPLE SUMMARY: The phenology of avian migration adjusts to rapid changes in the climate in Europe. The North Atlantic Oscillation (NAO), which reflects weather patterns in western Europe, has been demonstrated to influence the timing of bird migration. The question is, how does climate in other reg...

Full description

Bibliographic Details
Published in:Animals
Main Authors: Gołębiewski, Ignacy, Remisiewicz, Magdalena
Format: Text
Language:English
Published: MDPI 2023
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10295032/
http://www.ncbi.nlm.nih.gov/pubmed/37370525
https://doi.org/10.3390/ani13122015
Description
Summary:SIMPLE SUMMARY: The phenology of avian migration adjusts to rapid changes in the climate in Europe. The North Atlantic Oscillation (NAO), which reflects weather patterns in western Europe, has been demonstrated to influence the timing of bird migration. The question is, how does climate in other regions of their wintering and breeding grounds in Europe influence migrants, which move between these areas? We aimed to determine carry-over effects of the Mediterranean Oscillation Index (MOI), a proxy for non-breeding conditions in the eastern Mediterranean, and the Scandinavian Pattern (SCAND), which reflects conditions at the breeding grounds, in combination with NAO, on the timing of the European wren’s short-distance spring migration through the Baltic Sea coast over 1982–2021. We showed that a combination of winter and spring MOI and NAO, as well as SCAND from the previous breeding season, explained the year-to-year variation in timing of the wren’s spring passage at the Baltic coast three to ten months later. Our study reveals that conditions the migrants encounter at wide non-breeding and breeding grounds during the preceding year have a carry-over effect on spring phenology of migrants in Europe, while spring conditions just fine-tune their timing. ABSTRACT: Many studies have linked changes in avian phenology in Europe to the North Atlantic Oscillation (NAO), which serves as a proxy for conditions in western Europe. However, the effects of climate variation in other regions of Europe on the phenology of short-distance migrants with large non-breeding grounds remain unclear. We determined the combined influence of large-scale climate indices, NAO, the Mediterranean Oscillation Index (MOI), and the Scandinavian Pattern (SCAND), during the preceding year on spring migration timing of European wren at the southern Baltic coast during 1982–2021. We modelled the effects of these climate variables on the entire passage and subsequent percentiles of the wren’s passage at Bukowo-Kopań and Hel ringing stations. Over ...