From the Caribbean to the Arctic, the most abundant microplastic particles in the ocean have escaped detection.

Comprehensive methodologies for monitoring microplastics (MPs) in the ocean are critical for accurately assessing abundances across a broad size spectrum, and to document distributions, sources, sinks, temporal trends, and exposure risks for organisms. Discrete 0.5-L water samples from the northeast...

Full description

Bibliographic Details
Published in:Marine Pollution Bulletin
Main Authors: Medina Faull, Luis E, Zaliznyak, Tatiana, Taylor, Gordon T
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier Science 2024
Subjects:
Online Access:https://doi.org/10.1016/j.marpolbul.2024.116338
https://pubmed.ncbi.nlm.nih.gov/38640763
Description
Summary:Comprehensive methodologies for monitoring microplastics (MPs) in the ocean are critical for accurately assessing abundances across a broad size spectrum, and to document distributions, sources, sinks, temporal trends, and exposure risks for organisms. Discrete 0.5-L water samples from the northeastern-coast of Venezuela (NECV), Pacific-Arctic Ocean (PAO), and Gulf Stream Current (GSC) were analyzed by Raman microspectroscopy to detect MPs not captured by net-tow surveys. Equivalent spherical diameters (ESD) of most MPs were <5 μm, accounting for 68, 83, 86 % of total inventories in NECV, GSC, PAO samples. We did not observe a single MP particle >53 μm ESD. Abundances of MPs in the 0.5-200 μm size fraction were 5-6 orders of magnitude higher than previous surveys that were almost exclusively based on net tow collections of MPs > 300 μm ESD. Abundances of MPs in NECV samples were ~10-fold higher than those from PAO and GSC. The most abundant polymers were polypropylene (PP), polystyrene (PS) and polyethylene terephthalate (PET), consistent with composition of plastic waste generated globally.