Stable carbon isotope distribution of particulate organic matter in the ocean: A model study

The stable carbon isotopic composition of particulate organic matter in the ocean, δ13C(POC), shows characteristic spatial variations with high values in low latitudes and low values in high latitudes. The lowest δ13C(POC) values (-32‰ to -35‰) have been reported in the Southern Ocean, whereas in ar...

Full description

Bibliographic Details
Published in:Marine Chemistry
Main Authors: Hofmann, M., Wolf-Gladrow, D., Takahashi, T., Sutherland, S., Six, K., Maier-Reimer, E.
Format: Article in Journal/Newspaper
Language:English
Published: 2000
Subjects:
Online Access:http://hdl.handle.net/21.11116/0000-0005-0AA1-A
http://hdl.handle.net/21.11116/0000-0005-0AA3-8
id ftpubman:oai:pure.mpg.de:item_3173508
record_format openpolar
spelling ftpubman:oai:pure.mpg.de:item_3173508 2023-08-27T04:08:12+02:00 Stable carbon isotope distribution of particulate organic matter in the ocean: A model study Hofmann, M. Wolf-Gladrow, D. Takahashi, T. Sutherland, S. Six, K. Maier-Reimer, E. 2000 application/pdf http://hdl.handle.net/21.11116/0000-0005-0AA1-A http://hdl.handle.net/21.11116/0000-0005-0AA3-8 eng eng info:eu-repo/semantics/altIdentifier/doi/10.1016/S0304-4203(00)00078-5 http://hdl.handle.net/21.11116/0000-0005-0AA1-A http://hdl.handle.net/21.11116/0000-0005-0AA3-8 Marine Chemistry info:eu-repo/semantics/article 2000 ftpubman https://doi.org/10.1016/S0304-4203(00)00078-5 2023-08-02T00:09:02Z The stable carbon isotopic composition of particulate organic matter in the ocean, δ13C(POC), shows characteristic spatial variations with high values in low latitudes and low values in high latitudes. The lowest δ13C(POC) values (-32‰ to -35‰) have been reported in the Southern Ocean, whereas in arctic and subarctic regions δ13C(POC) values do not drop below -27‰. This interhemispheric asymmetry is still unexplained. Global gradients in δ13C(POC) are much greater than in δ13C(DIC), suggesting that variations in isotopic fractionation during organic matter production are primarily responsible for the observed range in δ13C(POC). Understanding the factors that control isotope variability is a prerequisite when applying δ13C(POC) to the study of marine carbon biogeochemistry. The present model study attempts to reproduce the δ13C(POC) distribution pattern in the ocean. The three-dimensional (3D) Hamburg Model of the Oceanic Carbon Cycle version 3.1 (HAMOCC3.1) was combined with two different parametrizations of the biological fractionation of stable carbon isotopes. In the first parametrization, it is assumed that the isotopic fractionation between CO2 in seawater and the organic material produced by algae, ε(p), is a function of the ambient CO2 concentration. The two parameters of this function are derived from observations and are not based on an assumption of any specific mechanism. Thus, this parametrization is purely empirical. The second parametrization is based on fractionation models for microalgae. It is supported by several laboratory experiments. Here the fractionation, ε(p), depends on the CO2 concentration in seawater and on the (instantaneous) growth rates, μ(i), of the phytoplankton. In the Atlantic Ocean, where most field data are available, both parametrizations reproduce the latitudinal variability of the mean δ13C(POC) distribution. The interhemispheric asymmetry of δ13C(POC) can mostly be attributed to the interhemispheric asymmetry of CO2 concentration in the water. However, the strong ... Article in Journal/Newspaper Arctic Phytoplankton Southern Ocean Subarctic Max Planck Society: MPG.PuRe Arctic Southern Ocean Marine Chemistry 72 2-4 131 150
institution Open Polar
collection Max Planck Society: MPG.PuRe
op_collection_id ftpubman
language English
description The stable carbon isotopic composition of particulate organic matter in the ocean, δ13C(POC), shows characteristic spatial variations with high values in low latitudes and low values in high latitudes. The lowest δ13C(POC) values (-32‰ to -35‰) have been reported in the Southern Ocean, whereas in arctic and subarctic regions δ13C(POC) values do not drop below -27‰. This interhemispheric asymmetry is still unexplained. Global gradients in δ13C(POC) are much greater than in δ13C(DIC), suggesting that variations in isotopic fractionation during organic matter production are primarily responsible for the observed range in δ13C(POC). Understanding the factors that control isotope variability is a prerequisite when applying δ13C(POC) to the study of marine carbon biogeochemistry. The present model study attempts to reproduce the δ13C(POC) distribution pattern in the ocean. The three-dimensional (3D) Hamburg Model of the Oceanic Carbon Cycle version 3.1 (HAMOCC3.1) was combined with two different parametrizations of the biological fractionation of stable carbon isotopes. In the first parametrization, it is assumed that the isotopic fractionation between CO2 in seawater and the organic material produced by algae, ε(p), is a function of the ambient CO2 concentration. The two parameters of this function are derived from observations and are not based on an assumption of any specific mechanism. Thus, this parametrization is purely empirical. The second parametrization is based on fractionation models for microalgae. It is supported by several laboratory experiments. Here the fractionation, ε(p), depends on the CO2 concentration in seawater and on the (instantaneous) growth rates, μ(i), of the phytoplankton. In the Atlantic Ocean, where most field data are available, both parametrizations reproduce the latitudinal variability of the mean δ13C(POC) distribution. The interhemispheric asymmetry of δ13C(POC) can mostly be attributed to the interhemispheric asymmetry of CO2 concentration in the water. However, the strong ...
format Article in Journal/Newspaper
author Hofmann, M.
Wolf-Gladrow, D.
Takahashi, T.
Sutherland, S.
Six, K.
Maier-Reimer, E.
spellingShingle Hofmann, M.
Wolf-Gladrow, D.
Takahashi, T.
Sutherland, S.
Six, K.
Maier-Reimer, E.
Stable carbon isotope distribution of particulate organic matter in the ocean: A model study
author_facet Hofmann, M.
Wolf-Gladrow, D.
Takahashi, T.
Sutherland, S.
Six, K.
Maier-Reimer, E.
author_sort Hofmann, M.
title Stable carbon isotope distribution of particulate organic matter in the ocean: A model study
title_short Stable carbon isotope distribution of particulate organic matter in the ocean: A model study
title_full Stable carbon isotope distribution of particulate organic matter in the ocean: A model study
title_fullStr Stable carbon isotope distribution of particulate organic matter in the ocean: A model study
title_full_unstemmed Stable carbon isotope distribution of particulate organic matter in the ocean: A model study
title_sort stable carbon isotope distribution of particulate organic matter in the ocean: a model study
publishDate 2000
url http://hdl.handle.net/21.11116/0000-0005-0AA1-A
http://hdl.handle.net/21.11116/0000-0005-0AA3-8
geographic Arctic
Southern Ocean
geographic_facet Arctic
Southern Ocean
genre Arctic
Phytoplankton
Southern Ocean
Subarctic
genre_facet Arctic
Phytoplankton
Southern Ocean
Subarctic
op_source Marine Chemistry
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1016/S0304-4203(00)00078-5
http://hdl.handle.net/21.11116/0000-0005-0AA1-A
http://hdl.handle.net/21.11116/0000-0005-0AA3-8
op_doi https://doi.org/10.1016/S0304-4203(00)00078-5
container_title Marine Chemistry
container_volume 72
container_issue 2-4
container_start_page 131
op_container_end_page 150
_version_ 1775348910969061376