Overview paper: New insights into aerosol and climate in the Arctic

Motivated by the need to predict how the Arctic atmosphere will change in a warming world, this article summarizes recent advances made by the research consortium NETCARE (Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environments) that contribute to our fundamenta...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Abbatt, J., Leaitch, W., Aliabadi, A., Bertram, A., Blanchet, J., Boivin-Rioux, A., Bozem, H., Burkart, J., Chang, R., Charette, J., Chaubey, J., Christensen, R., Cirisan, A., Collins, D., Croft, B., Dionne, J., Evans, G., Fletcher, C., Gali, M., Ghahremaninezhad, R., Girard, E., Gong, W., Gosselin, M., Gourdal, M., Hanna, S., Hayashida, H., Herber, A., Hesaraki, S., Hoor, P., Huang, L., Hussherr, R., Irish, V., Keita, S., Kodros, J., Koellner, F., Kolonjari, F., Kunkel, D., Ladino, L., Law, K., Levasseur, M., Libois, Q., Liggio, J., Lizotte, M., Macdonald, K., Mahmood, R., Martin V, R., Mason, R., Miller, L., Moravek, A., Mortenson, E., Mungall, E., Murphy, J., Namazi, M., Norman, A., O'Neill, N., Pierce, J., Russell, L., Schneider, J., Schulz, H., Sharma, S., Si, M., Staebler, R., Steiner, N., Thomas, J., von Salzen, K., Wentzell, J., Willis, M., Wentworth, G., Xu, J., Yakobi-Hancock, J.
Format: Article in Journal/Newspaper
Language:unknown
Published: 2019
Subjects:
Online Access:http://hdl.handle.net/21.11116/0000-0003-EA75-2
id ftpubman:oai:pure.mpg.de:item_3080882
record_format openpolar
spelling ftpubman:oai:pure.mpg.de:item_3080882 2023-08-20T04:03:14+02:00 Overview paper: New insights into aerosol and climate in the Arctic Abbatt, J. Leaitch, W. Aliabadi, A. Bertram, A. Blanchet, J. Boivin-Rioux, A. Bozem, H. Burkart, J. Chang, R. Charette, J. Chaubey, J. Christensen, R. Cirisan, A. Collins, D. Croft, B. Dionne, J. Evans, G. Fletcher, C. Gali, M. Ghahremaninezhad, R. Girard, E. Gong, W. Gosselin, M. Gourdal, M. Hanna, S. Hayashida, H. Herber, A. Hesaraki, S. Hoor, P. Huang, L. Hussherr, R. Irish, V. Keita, S. Kodros, J. Koellner, F. Kolonjari, F. Kunkel, D. Ladino, L. Law, K. Levasseur, M. Libois, Q. Liggio, J. Lizotte, M. Macdonald, K. Mahmood, R. Martin V, R. Mason, R. Miller, L. Moravek, A. Mortenson, E. Mungall, E. Murphy, J. Namazi, M. Norman, A. O'Neill, N. Pierce, J. Russell, L. Schneider, J. Schulz, H. Sharma, S. Si, M. Staebler, R. Steiner, N. Thomas, J. von Salzen, K. Wentzell, J. Willis, M. Wentworth, G. Xu, J. Yakobi-Hancock, J. 2019 http://hdl.handle.net/21.11116/0000-0003-EA75-2 unknown info:eu-repo/semantics/altIdentifier/doi/10.5194/acp-19-2527-2019 http://hdl.handle.net/21.11116/0000-0003-EA75-2 Atmospheric Chemistry and Physics info:eu-repo/semantics/article 2019 ftpubman https://doi.org/10.5194/acp-19-2527-2019 2023-08-01T23:56:19Z Motivated by the need to predict how the Arctic atmosphere will change in a warming world, this article summarizes recent advances made by the research consortium NETCARE (Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environments) that contribute to our fundamental understanding of Arctic aerosol particles as they relate to climate forcing. The overall goal of NETCARE research has been to use an interdisciplinary approach encompassing extensive field observations and a range of chemical transport, earth system, and biogeochemical models. Several major findings and advances have emerged from NETCARE since its formation in 2013. (1) Unexpectedly high summertime dimethyl sulfide (DMS) levels were identified in ocean water (up to 75 nM) and the overlying atmosphere (up to 1 ppbv) in the Canadian Arctic Archipelago (CAA). Furthermore, melt ponds, which are widely prevalent, were identified as an important DMS source (with DMS concentrations of up to 6 nM and a potential contribution to atmospheric DMS of 20 % in the study area). (2) Evidence of widespread particle nucleation and growth in the marine boundary layer was found in the CAA in the summertime, with these events observed on 41 % of days in a 2016 cruise. As well, at Alert, Nunavut, particles that are newly formed and grown under conditions of minimal anthropogenic influence during the months of July and August are estimated to contribute 20 % to 80 % of the 30–50 nm particle number density. DMS-oxidation-driven nucleation is facilitated by the presence of atmospheric ammonia arising from seabird-colony emissions, and potentially also from coastal regions, tundra, and biomass burning. Via accumulation of secondary organic aerosol (SOA), a significant fraction of the new particles grow to sizes that are active in cloud droplet formation. Although the gaseous precursors to Arctic marine SOA remain poorly defined, the measured levels of common continental SOA precursors (isoprene and monoterpenes) were low, whereas elevated ... Article in Journal/Newspaper Arctic Archipelago Arctic Canadian Arctic Archipelago Nunavut Tundra Max Planck Society: MPG.PuRe Arctic Canadian Arctic Archipelago Nunavut Atmospheric Chemistry and Physics 19 4 2527 2560
institution Open Polar
collection Max Planck Society: MPG.PuRe
op_collection_id ftpubman
language unknown
description Motivated by the need to predict how the Arctic atmosphere will change in a warming world, this article summarizes recent advances made by the research consortium NETCARE (Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environments) that contribute to our fundamental understanding of Arctic aerosol particles as they relate to climate forcing. The overall goal of NETCARE research has been to use an interdisciplinary approach encompassing extensive field observations and a range of chemical transport, earth system, and biogeochemical models. Several major findings and advances have emerged from NETCARE since its formation in 2013. (1) Unexpectedly high summertime dimethyl sulfide (DMS) levels were identified in ocean water (up to 75 nM) and the overlying atmosphere (up to 1 ppbv) in the Canadian Arctic Archipelago (CAA). Furthermore, melt ponds, which are widely prevalent, were identified as an important DMS source (with DMS concentrations of up to 6 nM and a potential contribution to atmospheric DMS of 20 % in the study area). (2) Evidence of widespread particle nucleation and growth in the marine boundary layer was found in the CAA in the summertime, with these events observed on 41 % of days in a 2016 cruise. As well, at Alert, Nunavut, particles that are newly formed and grown under conditions of minimal anthropogenic influence during the months of July and August are estimated to contribute 20 % to 80 % of the 30–50 nm particle number density. DMS-oxidation-driven nucleation is facilitated by the presence of atmospheric ammonia arising from seabird-colony emissions, and potentially also from coastal regions, tundra, and biomass burning. Via accumulation of secondary organic aerosol (SOA), a significant fraction of the new particles grow to sizes that are active in cloud droplet formation. Although the gaseous precursors to Arctic marine SOA remain poorly defined, the measured levels of common continental SOA precursors (isoprene and monoterpenes) were low, whereas elevated ...
format Article in Journal/Newspaper
author Abbatt, J.
Leaitch, W.
Aliabadi, A.
Bertram, A.
Blanchet, J.
Boivin-Rioux, A.
Bozem, H.
Burkart, J.
Chang, R.
Charette, J.
Chaubey, J.
Christensen, R.
Cirisan, A.
Collins, D.
Croft, B.
Dionne, J.
Evans, G.
Fletcher, C.
Gali, M.
Ghahremaninezhad, R.
Girard, E.
Gong, W.
Gosselin, M.
Gourdal, M.
Hanna, S.
Hayashida, H.
Herber, A.
Hesaraki, S.
Hoor, P.
Huang, L.
Hussherr, R.
Irish, V.
Keita, S.
Kodros, J.
Koellner, F.
Kolonjari, F.
Kunkel, D.
Ladino, L.
Law, K.
Levasseur, M.
Libois, Q.
Liggio, J.
Lizotte, M.
Macdonald, K.
Mahmood, R.
Martin V, R.
Mason, R.
Miller, L.
Moravek, A.
Mortenson, E.
Mungall, E.
Murphy, J.
Namazi, M.
Norman, A.
O'Neill, N.
Pierce, J.
Russell, L.
Schneider, J.
Schulz, H.
Sharma, S.
Si, M.
Staebler, R.
Steiner, N.
Thomas, J.
von Salzen, K.
Wentzell, J.
Willis, M.
Wentworth, G.
Xu, J.
Yakobi-Hancock, J.
spellingShingle Abbatt, J.
Leaitch, W.
Aliabadi, A.
Bertram, A.
Blanchet, J.
Boivin-Rioux, A.
Bozem, H.
Burkart, J.
Chang, R.
Charette, J.
Chaubey, J.
Christensen, R.
Cirisan, A.
Collins, D.
Croft, B.
Dionne, J.
Evans, G.
Fletcher, C.
Gali, M.
Ghahremaninezhad, R.
Girard, E.
Gong, W.
Gosselin, M.
Gourdal, M.
Hanna, S.
Hayashida, H.
Herber, A.
Hesaraki, S.
Hoor, P.
Huang, L.
Hussherr, R.
Irish, V.
Keita, S.
Kodros, J.
Koellner, F.
Kolonjari, F.
Kunkel, D.
Ladino, L.
Law, K.
Levasseur, M.
Libois, Q.
Liggio, J.
Lizotte, M.
Macdonald, K.
Mahmood, R.
Martin V, R.
Mason, R.
Miller, L.
Moravek, A.
Mortenson, E.
Mungall, E.
Murphy, J.
Namazi, M.
Norman, A.
O'Neill, N.
Pierce, J.
Russell, L.
Schneider, J.
Schulz, H.
Sharma, S.
Si, M.
Staebler, R.
Steiner, N.
Thomas, J.
von Salzen, K.
Wentzell, J.
Willis, M.
Wentworth, G.
Xu, J.
Yakobi-Hancock, J.
Overview paper: New insights into aerosol and climate in the Arctic
author_facet Abbatt, J.
Leaitch, W.
Aliabadi, A.
Bertram, A.
Blanchet, J.
Boivin-Rioux, A.
Bozem, H.
Burkart, J.
Chang, R.
Charette, J.
Chaubey, J.
Christensen, R.
Cirisan, A.
Collins, D.
Croft, B.
Dionne, J.
Evans, G.
Fletcher, C.
Gali, M.
Ghahremaninezhad, R.
Girard, E.
Gong, W.
Gosselin, M.
Gourdal, M.
Hanna, S.
Hayashida, H.
Herber, A.
Hesaraki, S.
Hoor, P.
Huang, L.
Hussherr, R.
Irish, V.
Keita, S.
Kodros, J.
Koellner, F.
Kolonjari, F.
Kunkel, D.
Ladino, L.
Law, K.
Levasseur, M.
Libois, Q.
Liggio, J.
Lizotte, M.
Macdonald, K.
Mahmood, R.
Martin V, R.
Mason, R.
Miller, L.
Moravek, A.
Mortenson, E.
Mungall, E.
Murphy, J.
Namazi, M.
Norman, A.
O'Neill, N.
Pierce, J.
Russell, L.
Schneider, J.
Schulz, H.
Sharma, S.
Si, M.
Staebler, R.
Steiner, N.
Thomas, J.
von Salzen, K.
Wentzell, J.
Willis, M.
Wentworth, G.
Xu, J.
Yakobi-Hancock, J.
author_sort Abbatt, J.
title Overview paper: New insights into aerosol and climate in the Arctic
title_short Overview paper: New insights into aerosol and climate in the Arctic
title_full Overview paper: New insights into aerosol and climate in the Arctic
title_fullStr Overview paper: New insights into aerosol and climate in the Arctic
title_full_unstemmed Overview paper: New insights into aerosol and climate in the Arctic
title_sort overview paper: new insights into aerosol and climate in the arctic
publishDate 2019
url http://hdl.handle.net/21.11116/0000-0003-EA75-2
geographic Arctic
Canadian Arctic Archipelago
Nunavut
geographic_facet Arctic
Canadian Arctic Archipelago
Nunavut
genre Arctic Archipelago
Arctic
Canadian Arctic Archipelago
Nunavut
Tundra
genre_facet Arctic Archipelago
Arctic
Canadian Arctic Archipelago
Nunavut
Tundra
op_source Atmospheric Chemistry and Physics
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/acp-19-2527-2019
http://hdl.handle.net/21.11116/0000-0003-EA75-2
op_doi https://doi.org/10.5194/acp-19-2527-2019
container_title Atmospheric Chemistry and Physics
container_volume 19
container_issue 4
container_start_page 2527
op_container_end_page 2560
_version_ 1774713635215507456